多曝光图像融合

非深度学习方法:

参考Galaxies99开发的基于对齐方法的HDR合成方法工具包AlignHDRToolkit。
(可以主要地)参考使用 OpenCV 进行高动态范围(HDR)成像

都是主要分为以下3个步骤:

1. 对齐方法

我们在中提供了以下对齐方法对齐.py,您可以自由选择要使用的方法。

  1. MTB(AlignMTB(**kwargs)):MTB alignment method,是OpenCV的内置方法;**kwargs是cv2.createAlignMTB()的参数。
    参考Median Thresold Bitmap (MTB)算法中文详解
    算出图像的均值,然后把大于均值的设置为1,小于的设为0,得到均值二值图;两张曝光不同的图像的均值二值图,做异或运算(相同为1,不同为0),就可以得到差异图/偏移量图。。。(然后呢?如何根据偏移量做对齐?)
  2. MTB金字塔(AlignMTBPyramid(grey_-approx,threshold_-range,ref_-id)):G Ward发表的MTB金字塔对齐方法[1];grey_-approx是灰色近似方法,threshold_-range是中值阈值范围,ref_-id是参考图像id。
  3. 基于特征的ORB(AlignFeatureORB(min_matches,match_percent,**kwargs))(默认):由E Rublee[2]发布的基于特征的ORB对齐方法;min_matches是最小匹配对,match_percent是所选匹配对的百分比,**kwargs
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值