非深度学习方法:
参考Galaxies99开发的基于对齐方法的HDR合成方法工具包AlignHDRToolkit。
(可以主要地)参考使用 OpenCV 进行高动态范围(HDR)成像
都是主要分为以下3个步骤:
1. 对齐方法
我们在中提供了以下对齐方法对齐.py,您可以自由选择要使用的方法。
- MTB(AlignMTB(**kwargs)):MTB alignment method,是OpenCV的内置方法;**kwargs是cv2.createAlignMTB()的参数。
参考Median Thresold Bitmap (MTB)算法中文详解
算出图像的均值,然后把大于均值的设置为1,小于的设为0,得到均值二值图;两张曝光不同的图像的均值二值图,做异或运算(相同为1,不同为0),就可以得到差异图/偏移量图。。。(然后呢?如何根据偏移量做对齐?) - MTB金字塔(AlignMTBPyramid(grey_-approx,threshold_-range,ref_-id)):G Ward发表的MTB金字塔对齐方法[1];grey_-approx是灰色近似方法,threshold_-range是中值阈值范围,ref_-id是参考图像id。
- 基于特征的ORB(AlignFeatureORB(min_matches,match_percent,**kwargs))(默认):由E Rublee[2]发布的基于特征的ORB对齐方法;min_matches是最小匹配对,match_percent是所选匹配对的百分比,**kwargs

最低0.47元/天 解锁文章
4276

被折叠的 条评论
为什么被折叠?



