【无标题】

本文讨论了Yolov3和v5目标检测模型中置信度的定义,涉及如何通过取max评估分类性能。同时,文章强调了COCO测试集在目标检测任务中的常用性,以及mAP作为综合评估指标的局限性,特别是它在分类精度上的简化处理。

yolov3,v5目标检测的置信度定义,测试流程

置信度是这样定义的:
在这里插入图片描述
来自https://zhuanlan.zhihu.com/p/564855770

在这里插入图片描述
如何进行cls? 取max,相当于top1
来自https://blog.csdn.net/pangxing6491/article/details/125297384

目标检测文章一般都是用COCO测试集去评估,并且这些文章一般是检测和分类结果一起出的,指标只有mAP。mAP 其实就有综合评估目标检测和分类的作用,只不过在评估分类的时候没有那么专用和准确(比如只看max的结果,而不看置信度更高或更低(方差))

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值