自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 ArcGIS Engine开发学习(2)控件的使用案例

(1)窗体创建的相关流程1.在VS2012中创建一个Window应用程序项目,命名为T22.在工具箱中选择所有Windows窗体–将menuStrip控件拖曳到窗体T2上3.在ArcGISWindowsForms选项中拖曳2个MapControl和1个ToolbarControl控件到窗体上4.在所有Windows窗体中拖曳Label、Text控件到T2窗体上5.在menuStrip控件上添加菜单,完成如下图所示)(2)添加引用并在“Form1.cs”代码中添加如下代码,引入命名空间(

2022-06-04 20:18:30 2875 1

原创 ArcGIS Engine开发

ArcGIS Engine开发(1)制图控件、3D控件、框架控件2022年6月4日/*****************************************************************************************************************************************************/控件相关概念控件:是对数据和方法的封装,属性是控件数据的访问者,方法是控件可见的功能类:现实世界某些对象所具有共同特征的

2022-06-04 18:41:12 326

原创 利用model_selection中的train_test_split对整个dataset进行切分

交叉验证:评估模型的表现1.使用train_test_split可以对训练和测试集进行快速的切分在切分之前该函数参数中的shuffle的default = True,默认的会对数据进行洗牌之后再切分import numpy as npfrom sklearn.model_selection import train_test_splitX, y = np.arange(10).resh...

2019-04-02 18:13:56 727

原创 sklearn数据映射之分位数均匀分布映射-Quantile_tranformer

from sklearn.datasets import load_irisfrom sklearn.model_selection import train_test_splitfrom sklearn import preprocessingimport numpy as npimport matplotlib.pyplot as plt#load the iris dataset...

2019-04-02 12:20:44 4914

原创 稀疏数据[sparse data]和异常值数据[outliers data]的缩放、集中

稀疏数据[sparse data]和异常值数据[outliers data]的缩放、集中(一)稀疏数据[sparse data]的Scale centered1.Sparse数据通常不做centering data,否则会破坏稀疏数据本身的结构2.Sparse数据通常可以做Scale,如果各种特征处于不同的尺度上3.Scale函数和StandardScaler函数均可以接受scipy.sp...

2019-04-01 20:21:00 3123

原创 sklearn特征缩放之MaxAbsScaler

通过 MaxAbsScaler进行特征缩放import numpy as npimport matplotlib.pyplot as pltfrom sklearn import preprocessing(一)基本的用法和示例MaxAbsScaler 类与 MinMaxScaler 非常类似但是其是通过对每个feature样本÷该feature中的最大值将其feature中的样本归一...

2019-04-01 19:38:39 3624

原创 sklearn 特征缩放之 MinMaxScaler

sklearn 中的预处理数据模块系列1-MinMaxScalerfrom sklearn import preprocessingimport numpy as npimport matplotlib.pyplot as plt1.生成测试数据X_train = np.array([[1., -1., 2.], [2., 0., 0.], ...

2019-04-01 19:04:35 6289 3

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除