对高等数学中的基本概念的剖析

对高等数学中的基本概念的剖析 

作者:温旭辉华南理工大学数学科学学院



高等数学是理工科大学生入学后的第一门基础课程,它是学生学习后续数学课程以及专业课程的基础和工具,学习高等数学不但要使学生掌握数学的基本理论知识,还要使得学生学会运用数学思维和思想解决问题的方法,因此可以说,高等数学是理工科大学生最重要的一门基础课程。

本文从高等数学中的极限、导数和定积分等基本概念出发,分析其中蕴涵的常量与变量、有限与无限、近似与精确等辨证思想,帮助学生理解高等数学思想方法的本质,从常量转向变量,从静态转向动态,从有限转向无限,从初等数学的思维模式过度到高等数学的思维模式,为学习好高等数学课程打下坚实的基础。

一、高等数学基本概念的形成

高等数学的主要内容就是微积分,其基本思想方法在古代就已经产生了,比如古希腊科学家阿基米德在研究解决抛物弓形的面积、球冠面积等问题时所用的方法,就隐含近代积分学的思想,我国古代数学家刘徽为了计算圆的面积而提出的割圆术,则蕴涵了典型的极限思想。到了1 7世纪,为了解决运动的瞬时速度、曲线的切线、函数的最大小值等问题,以及求曲线长度、曲线围成的面积、曲面围成的体积等问题,牛顿莱布尼茨建立了微分学和积分学,形成了导数与微分的概念以及积分的概念,把这些看上去毫不相干的问题从数学上归纳成两种互逆的类型:微分与积分,解决了这些初等数学束手无策的问题。在微积分发展初期使用的无穷小量,经过不断的完善,形成了现代的极限法。

因此,极限、导数、微分、积分等基本概念,具有非常普遍的实际背景,体现了微积分解决这些问题的思想和方法,蕴涵了丰富的辨证唯物注意思想,是学好高等数学的基础,也是我们利用数学知识解决实际问题的方法指南。

二、高等数学中的辨证思想

初等数学是常量的数学,它研究静态问题、均匀问题。而高等数学则是变量的数学,它要研究运动过程、无限过程,因此高等数学从观点到方法都和初等数学有着本质的差异。高等数学的思想方法中,蕴涵着丰富的辨证唯物主义的思想,表现出相互依存与相互转换的对立统一关系,比如:常量与变量的关系,有限与无限的关系,近似与精确的关系,局部与整体的关系,特殊与一般的关系,量变与质变的关系等。学习高等数学,要求学生在思维模式上有本质上的转变,从常量转向变量,从有限转向无限,从而把握高等数学的基本思想和方法。

1.常量与变量的关系

常量是反映事物相对静止状态的量,而变量则是反映事物运动变化状态的量,二者既有区别,又相互依存,在一定条件下还可以相互转换。初等数学研究常量,而高等数学则主要研究变量,以及运用常量与变量之间的相互转换来解决问题。数列极限的“ε-N”定义中的ε,就是变量与常量的统一;导数概念的建立以及定积分概念的建立,都包含了一种将变量化为常量,最后解决变量问题的思想。

2.有限与无限的关系

从有限发展到无限,是认识上的一次飞跃,有限与无限之间存在着本质的差异,针对有限量成立的关系,到了无限量就不再成立。初等数学不能处理无限过程,而在高等数学中,我们可以通过有限来认识无限,同时通过有限来确定无限,这是一个从量变到质变的过程,它是微积分的基本思想方法,也就是我们熟知的极限法。导数概念的建立以及定积分概念的建立,都是一个从有限到无限的过程,都需要借助极限法。

3.近似与精确的关系

高等数学中要解决的是非均匀分布或变化的问题,因此无法象初等数学一样直接得到简洁完美的公式。高等数学中无论是微分法还是积分法,解决问题所采用的方式,通常是先作近似值,再通过极限过度到精确值。作近似值所用到的公式通常就是初等数学中已有的内容,但高等数学依靠极限过程,从有限过度无限、从量变过度质变,最终完成了本质飞跃。导数概念的建立以及定积分概念的建立,就充分反映了这种近似向精确转化的典型方式。

三、对高等数学中基本概念的分析

高等数学中的极限、导数、微分、积分等基本概念,蕴涵了高等数学理论体系中的基本思想,反映了高等数学中解决实对高等数学中的基本概念的剖析际问题的基本方式。深刻理解这些思想方法,提高对高等数学理论体系的认识,是学好高等数学的基本要求。

1.关于极限的概念

从直观上看,极限就是无限趋近,但什么是无限趋近呢?我们可以解释说,无限趋近就是,要多接近就会有多接近,或者说接近程度要多小就会有多小。但这些解释是含糊的,逻辑上是不严格的。为了消除这种不严格性,德国数学家魏尔斯特拉斯引入了两个有限数tN,建立了现代的极限理论,这就是我们现在使用的关于数列极限的“ε-N”定义。

数列极限的“ε-N”定义中,ε的作用在于衡量数列的项un与其极限值A之间的接近程度,不等式│un-A│<ε表示这个接近程度可以小于任意给定的正数ε,从而说明了数列的项与其极限值的接近程度可以任意地小,即无限接近,这时ε是可以任意小的正数,具有可变的属性,是变量。为了说明在n充分大后不等式│un-A│<ε一定成立,我们需要从不等式出发找到一个N,即只要nN则不等式一定成立,在找N的过程中,这个ε是相对固定的,是常量。因此极限定义中反映出常量与变量的相对性。

数列极限的“ε-N”定义,因非常抽象而难于理解,但它借助于两个有限数ε和N来定量地揭示两个无限过程之间的联系,通过ε的绝对任意性和相对固定性,以及N的存在性,精确地刻画了数列变化的无限过程。这种借助有限来认识无限的方法,就是微积分的基本思想方法—极限法。

2.关于导数的概念

导数就是变化率,即因变量相对于自变量的变化率,是自然界普遍存在的一类问题。导数概念的基本原型是变速直线运动中的瞬时速度问题和曲线的切线问题等,我们来分析在求变速直线运动的瞬时速度时所用的方法,其基本思想是先近似再精确,借助于极限方法从有限转化为无限,从量变过度到质变。

t表示时间,s(t)表示运动的路程函数。为了确定在时刻t0的瞬时速度v0,先考察小段时间[t0t0+Δt]内,先将变速运动近似看成匀速运动,化变量为常量,得到时段内的平均速度,(平均速度=时段内运动路程/间隔时间),以平均速度作为瞬时速度v0的近似值。

显然,Δt越小近似程度越高,但不论Δt多么小,平均速度都不能取代瞬时速度v0。为了得到瞬时速度v0,我们需要Δt无限地小下去,从有限过度到无限,实现这个过程所用到的方法就是极限法,在这个无限过程中,从量变发生了质变,最终的极限值就是我们需要计算的瞬时速度,即。这种形式的极限具有普遍意义,我们称之为导数,即瞬时速度v0就是s(t)在时刻t0处的导数。

3.关于定积分的概念

定积分来源于求不规则平面图形的面积或不规则立体的体积等几何问题,它的基本特征是非均匀分布,定积分定义的基本原型是曲边梯形的面积,我们来分析在求曲边梯形的面积时所用的微元法。微元法采用分割、近似、求极限的过程,其基本思想也是先近似再精确,借助于极限方法从有限转化为无限,从量变过度到质变。

假设曲边梯形的高度是一个函数f(x),其中。为了求出它的面积A,我们依然采用从近似到精确的方式。为了得到整个面积A的一个近似值,首先化整为零,将整个曲边梯形分割成n个小曲边梯形,每个小曲边梯形的高度从变量看成常量,将曲边化为直边,从而近似看成窄矩形(如图1),窄矩形的面积宽X高,全部窄矩形面积之和就是整个曲边梯形面积的近似,,这就是积零为整。

显然,我们分得越细,近似程度就越高,但不管分得多细,窄矩形面积之和始终不能代替曲边梯形的面积。为了精确得到曲边梯形的面积,我们需要将分割无限地细下去,从有限过度到无限,实现这个过程所用到的方法就是极限法,在这个无限过程中,从量变发生了质变,最终的极限值就是我们需要计算的曲边梯形面积,即。这种形式的极限具有普遍意义,我们称之为定积分,即曲边梯形的面积就是f(x)在时刻[ab]上的定积分。

四、结束语

高等数学的精髓在于极限、连续、导数、微分、积分等基本概念中,深刻理解这些概念是学好高等数学的基础,但这些概念理论性很强又非常抽象,且思维模式与初等数学完全不同,因此也是学生学习中的难点。在讲授这些概念时,我们可以结合一些实例,介绍一些微积分的背景知识,采用图形的直观效果等手段,把它们讲得浅显易懂,生动直观,除此以外,我们还应该给学生分析其中的辨证关系,使学生逐步适应高等数学中变量的思想、无限的思想,以及以极限为工具从近似过度到精确、从有限过度到无限等思想方法,使学生在认识上跨越初等数学,进入高等数学的变量世界中,为学好高等数学打下坚实的基础。


  • 5
    点赞
  • 37
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值