sklearn进行kmeans聚类分析

该代码示例展示了如何利用Python的sklearn库对iris数据集进行KMeans聚类。首先导入必要的库,加载iris数据集并选取前四个特征。然后,绘制数据分布图,接着应用KMeans算法,将数据分为三个簇,并分别用不同颜色表示每个簇的数据点。最后,展示聚类结果的散点图。
摘要由CSDN通过智能技术生成
import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import KMeans
from sklearn import datasets

iris = datasets.load_iris()
X = iris.data[:, :4]  # #表示我们取特征空间中的4个维度
print(X.shape)

# 绘制数据分布图
plt.scatter(X[:, 0], X[:, 1], c="red", marker='o', label='see')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend(loc=2)
plt.show()

在这里插入图片描述

estimator = KMeans(n_clusters=3)  # 构造聚类器
estimator.fit(X)  # 聚类
label_pred = estimator.labels_  # 获取聚类标签
# 绘制k-means结果
x0 = X[label_pred == 0]
x1 = X[label_pred == 1]
x2 = X[label_pred == 2]
plt.scatter(x0[:, 0], x0[:, 1], c="red", marker='o', label='label0')
plt.scatter(x1[:, 0], x1[:, 1], c="green", marker='*', label='label1')
plt.scatter(x2[:, 0], x2[:, 1], c="blue", marker='+', label='label2')
plt.xlabel('sepal wilson length')
plt.ylabel('sepal python width')
plt.legend(loc=2)
plt.show()

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值