newcode K序列 o(n)复杂度算法 以及 dp算法+滚动数组+状态压缩 o(k*n)复杂度

链接:https://www.nowcoder.com/acm/contest/91/L
来源:牛客网

给一个数组 a,长度为 n,若某个子序列中的和为 K 的倍数,那么这个序列被称为“K 序列”。现在要你 对数组 a 求出最长的子序列的长度,满足这个序列是 K 序列。 

输入描述:

第一行为两个整数 n, K, 以空格分隔,第二行为 n 个整数,表示 a[1] ∼ a[n],1 ≤ n ≤ 105 , 1 ≤ a[i] ≤ 109 , 1 ≤ nK ≤ 107

输出描述:

输出一个整数表示最长子序列的长度 m
示例1

输入

7 5
10 3 4 2 2 9 8

输出

6

用数组a存每个元素对k的余数,sum为所有数合对k的余数

对数组a从大到小排序

遍历a数组,sum减去第一个比它小的数,一直到sum为0退出

o(n)复杂度代码

#include <iostream>
#include <string>
#include <cstdio>
#include <algorithm>
#include <map>
#define maxn 100000+6
using namespace std;
int a[maxn];
bool cmp(int &a, int &b)
{
	return a > b;
}
int main()
{
	int n,x,k,sum=0;
	cin >> n >> k;
	for (int i=0; i < n; i++)
	{
		cin >> x;
		x = x % k;
		a[i] = x;
		sum += x;
	}
	sort(a, a + n, cmp);
	int ans = n;
	sum = sum % k;
	for (int i = 0; i < n; i++)
	{
		if (!sum)
			break;
		if (sum >=a[i])
		{
			sum -= a[i];
			ans -= 1;
		}
	}
	cout << ans << endl;

}

dp+滚动数组+状态压缩

更新余数为(j+a[i])%k

首先判断余数为j的子序列存在与否

如果存在就判断是在余数为j的基础上加上a[i]的子序列长还是上一次余数为(j+a[i])%k的子序列长

如果不存在就转移上一次余数为(j+a[i])%k的子序列长

转移方程为 :

if(dp[1-last][j])
{
    dp[last][(j+a[i])%k]=max(dp[1-last][(j+a[i])%k],dp[1-last][j]+1);
}
else
{
    dp[last][(j+a[i])%k]=dp[1-last][(j+a[i])%k];
}

实现代码:

#include<iostream>
#include<string>
#include<string.h>
#include<algorithm>
using namespace std;
int dp[2][10000006]; //滚动数组,状态压缩
int a[100500];
int main() {
	int n, k;
	cin >> n >> k;
	for (int i = 1; i <= n; i++) {
		cin >> a[i];
		a[i] = a[i] % k;
	}
	dp[0][a[1]] = 1;
	int last = 0;
	for (int i = 2; i <= n; i++) {
		last = 1 - last;            //滚动数组
		for (int j = 0; j<k; j++) {
			if (dp[1 - last][j] != 0) {
				dp[last][(j + a[i]) % k] = max(dp[1 - last][(j + a[i]) % k], dp[1 - last][j] + 1);
			}
			else {
				dp[last][(j + a[i]) % k] = dp[1 - last][(j + a[i]) % k];
			}
		}
	}
	cout << dp[last][0] << endl;
	return 0;
}


阅读更多
个人分类: 算法 newcode
上一篇D. Merge Equals
下一篇dijkstra算法的优化,利用优先队列
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭