Docker简介
Docker是2013发起的一个项目,早在2013年,Docker自诞生起,就是整个技术界的明星项目,当时我还在上海实习,就在各种技术媒体上看到了Docker的介绍文章,很多技术媒体宣称docker是一项技术突破,并且是一次技术革命,可惜当时由于本身是一个Android Framework开发者,眼界很低,对于这种OS虚拟化技术有点不屑一顾,而今转后台后才发现这项技术的重要性Docker的特征
Docker是一个云开源项目,托管在github,任何人都可以通过 git clone 或者fork参与进来,本身是基于linux的容器技术,采用当时如日中天google新推出的Go语言实现。采用apache 2.0协议开源。docker镜像地址
Go语言与Docker
相比Go语言与其它语言的对比,国内外很多技术媒体都有列举,在Docker领域,Go语言相比其它语言的优势在于- 相对于C/C 开发难度低,支持向前兼容,运维维护成本小
- 相对于python,生成的是静态文件,有效的避免的低级错误,并且性能高一个等级
- 并发性好,内存占用低
- 部署简单,毕竟生成的静态文件,有glibc的地方就能运行
一门语言当然也有自己的缺点,比如,内存回收延迟久,图片处理库有bug,对包版本要求严格等一些问题,但是瑕不掩瑜,一个开发成本极其简单,性能优良,部署简单的语言与Docker简直就是 天作之合
至于Go语言的优势,在Go的社区中都有非常详尽的讨论,这里不多讲
Docker的目标
Docker的是一个轻量级的操作系统虚拟化解决方案。 主要目标,用官网的概括来说就是“Build,Ship and Run Any App,Anywhere”:编译,装载任何App,在任何地方都可以运行,我们大概理解就是一个容器,实现了对应用的封装,部署,运行等生命周期管理,只要在glibc的环境下,到处都可以运行。这点在企业的云服务部署是有非常广泛的应用前景。后面我们将详细讨论。
Docker的引擎
Docker的是基于Linux自带的(Linux。 Containers,LXC)技术,在LXC上,Docker进行了近一步封装。正因为如此,Docker只能在Linux环境下运行,当然,前段时间docker终于支持OSX和Windows了,虽然还是体验尝鲜版,但更加方便开发者去开发了!Docker的原理
其实前面讲了这么多,Docker的原理已经不言而喻,这里用IBM的解释就是容器有效的将单个操作系统管理的资源划分到孤立的组中,以便更好的在孤立的组之间平衡有冲突的资源使用需求。与虚拟化相比,这样既不需要指令级模拟,也不需要即时编译。容器可以在核心CPU本地运行指令,而不需要任何专门的解释机制。此外,也避免了准虚拟化(paravirtualization)和系统调用替换中的复杂性。
简而言之就是,Docker是一个盒子,一个盒子装一个玩具,无论你丢在哪里,你给他通电(glibc),他就能运行。你的玩具大就用大盒子,小玩具就用小盒子。
两个应用之间的环境是环境是完全隔离的,建立通信机制来互相调用。容器的创建和停止都十分快速(秒级),容器自身对资源的需求十分有限,远比虚拟机本身占用的资源少。
Docker VS VM
Docker与虚拟机(虚拟机)的区别可以看:左图是虚拟机的工作原理图,对资源进行抽象,着重体现在硬件层面的虚拟化上,这种方式增加了两场调用链,对性能的损耗比较大,而且还会占用大量的内存资源
有图是Docker的工作原理图,属于OS级别的虚拟化,kernel通过创建多个镜像来隔离不同的app进程,由于kernel是是共享,而且本身linux image也不大,性能损耗几乎可以不计,而且内存占用也不大,大大节约了设备成本。
Docker架构总览
最核心的是 Docker Daemon我们称之为Docker守护进程,也就是Server端,Server端可以部署在远程,也可以部署在本地,因为Server端与客户端(Docker Client)是通过Rest API进行通信。
docker CLI 实现容器和镜像的管理,为用户提供统一的操作界面,这个 客户端提供一个只读的镜像,然后通过镜像可以创建一个或者多个容器(container),这些容器可以只是一个RFS(Root File System),也可以是一个包含了用户应用的RFS。容器在docker Client中只是一个进程,两个进程是互不可见的。
用户不能与server直接交互,但可以通过与容器这个桥梁来交互,由于是操作系统级别的虚拟技术,中间的损耗几乎可以不计
注:
CLI:command line interface。命令行接口.
RFS:Root File System 根文件系统.
Image & Container
在docker中,我们重点关注的就是镜像和容器了。因为在实际应用中,我们封装好镜像,然后通过镜像来创建容器,在容器运行我们的应用就好了。而server端掌控网络和磁盘,我们不用去关心,启动docker sever 和 docker client都是一条命令的事情。后面会详细讲docker的启动过程。Image: 一个只读的镜像模板。可以自己创建一个镜像也可以从网站上下载镜像供自己使用。镜像包含了一个RFS.一个镜像可以创建很多容器。
Container: 由docker client通过镜像创建的实例,用户在容器中运行应用,一旦创建后就可以看做是一个简单的RFS,每个应用运行在隔离的容器中,享用独自的权限,用户,网络。确保安全与互相干扰
两者在创建后,都是一堆layer的统一视角,唯一的却别是镜像最上面那一层是只读的,不可以修改,但是容器最上面一层是rw的,提供给用户操作
repository: 仓库,这个东西没有单独介绍不是因为它不重要,而是因为之前做个比较多的Android源码编译,所以这里就没有仔细往下看,大概就是一个镜像库,最大的是docker hub,类似于google 的aosp,当然也可以本地搭,比如mig事业群就有自己的repo。
Docker的应用
最后,这里讲一下docker的应用作为本文的终结。A:为什么会想起来学习docker技术
2016年年中的时候,我转做后台,经历了一段时间的时候痛苦转型后,中学摸到了门槛,年底赶上事业群的服务器docker化,那段时间非常痛苦,因为相对实体机或者虚拟机,各种问题频出,因为虚拟机或者实体机是不会迁移的,我们部署一套服务后会有一些依赖库需要安装,但是那段时间docker经常迁移,之前也没有接触过docker,导致问题频出。
到2017年4月的时候,docker基本稳定下来,我们也开始享受docker带来的种种便利,比如:
- 发布服务再也不用care服务器的运行环境了,所有的服务器都是自动分配docker,自动部署,自动安装,自动运行
- 再也不用担心其他服务引起的磁盘问题,cpu问题,系统问题了。之前我们固定在一台idc上发布我们所有的服务,导致后面这台idc上挂了200多个服务,日志文件经常导致磁盘爆满,一旦磁盘爆满,200多个服务就要挂掉一半服务。
- 更好的资源利用,因为今年还没有数据出来,但个人预计是会给公司节省一半的服务器资源,既避免了资源浪费的同时,又保证了服务的稳定运行
- 自动迁移,学历了docker后,我们可以自己制作镜像,后面服务迁移的时候,只要使用我们自己的镜像,无论怎么迁移都不会出现任何问题
- 对于运维来说,管理更加方便了。
目前MIG事业群已经全面接入了docker,也证明了docker容器技术的成功性。
PS:
- edhat 已经集中支持 Docker
- Google 在PaaS 产品中广泛应用。