TensorFlow之tf.unstack学习循环神经网络中用到

tf.stack和tf.unstack分别表示矩阵的合并和分解,下面用一个小示例演示用法

import tensorflow as tf
import sys
import os
import numpy as np

a = tf.constant([1 , 2 , 3])
b = tf.constant([4 , 5 , 6])

c = tf.stack([a , b] , axis=0)
d = tf.unstack(c , axis=0)
e = tf.unstack(c , axis=1)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    print(sess.run(c))
    print(sess.run(d))
    print(sess.run(e))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

输出结果: 
[[1 2 3] 
[4 5 6]] 
[array([1, 2, 3]), array([4, 5, 6])] 
[array([1, 4]), array([2, 5]), array([3, 6])]


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值