bzoj 2118 墨墨的等式 dijkstra

本文介绍了一种解决特定模数下最小值问题的方法。通过选取一个基准数并构建图论模型来确定各个余数对应的最小值,进而采用最短路径算法求解在给定区间内的有效解数量。

题目链接点这里

唔,先说点关于题目的但是对于此题没用的东西。。

如果gcd(a,b)=1,那n*a+m*b所不能组成的最大的数是a*b-a-b,,所以如果这题范围是几百的话,那a*b才几十万,完全可以完全背包做,,,,恩,,这个和这题没毛线关系

我们在这12个数任选一个数假设a,,假设我们已经求出膜a等于x的最小的B(记做a*k+x)(a-1>=x>=0),那B集合中的每一个数都可以由某一个余数x,与其对应最小的a*k+x加上多少个B表示。。这个应该很好算了。

那怎么算出这a个余的最小a*k+x那。。。我们可以将每个余x看成一个点,,加上某个数后就变成新的余y,,x就向y连一条相应权值的边,,,,,,,,,就好了

update:看到一个加强版题目,下面有叉姐的解答:https://post.icpc-camp.org/d/674-poi-x-sums/9

#include<bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define INFLL 0x3f3f3f3f3f3f3f3f
#define FIN freopen("input.txt","r",stdin)
#define mem(x,y) memset(x,y,sizeof(x))
typedef unsigned long long ULL;
typedef long long LL;
#define fuck(x) cout<<"x"<<endl;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
typedef pair<pair<int,int>,int> PIII;
typedef pair<LL,int> PII;
const double eps=1e-6;
const int MX=5e5+5;
const int P=23333333;
int n;
LL bmin,bmax;
int w[22];
LL d[MX];
void dijkstra(int s)
{
    priority_queue<PII,vector<PII>,greater<PII> >Q;
    mem(d,0x3f);
    d[s]=0;
    Q.push(PII(0,s));
    while(!Q.empty())
    {
        int u=Q.top().second;
        LL dis=Q.top().first;
        Q.pop();
        if(dis>d[u])continue;
        for(int i=2; i<=n; i++)
        {
            int v=(u+w[i])%w[1];
            if(d[v]<=dis+w[i])continue;
            d[v]=dis+w[i];
            Q.push(PII(d[v],v));
        }
    }
}
int main()
{
    FIN;
    while(cin>>n>>bmin>>bmax)
    {
        bmin--;
        for(int i=1; i<=n; i++)scanf("%d",&w[i]);
        sort(w+1,w+1+n);
        dijkstra(0);
        LL ansa=0,ansb=0;
        for(int i=0; i<w[1]; i++)
        {
            if(d[i]<=bmin)
            {
                ansa=ansa+(bmin-d[i])/w[1]+1;
            }
            if(d[i]<=bmax)
            {
                ansb=ansb+(bmax-d[i])/w[1]+1;
            }
        }
        cout<<ansb-ansa<<endl;
    }
    return 0;
}



内容概要:本文档《AUTOSAR_SRS_ModeManagement.pdf》定义了AUTOSAR经典平台(Classic Platform)中模式管理模块的功能与非功能性需求,涵盖ECU状态管理器(EcuM)、看门狗管理器(WdgM)、通信管理器(ComM)和基础软件模式管理器(BswM)四大核心模块。文档详细阐述了各模块在启动、运行、休眠及关机等状态下的行为规范、配置要求与接口标准,支持多核架构、部分网络(Partial Networks)、报警时钟、故障监控与诊断等功能,并明确了各模块间的协作机制与系统级模式切换策略。此外,文档还提供了需求追溯表,确保各项功能符合AUTOSAR整体架构要求。; 适合人群:汽车电子领域从事嵌入式软件开发、系统架构设计及相关技术研究的工程师和技术人员,尤其是熟悉AUTOSAR架构并参与ECU软件开发、集成或验证工作的专业人士。; 使用场景及目标:①用于指导AUTOSAR平台上ECU模式管理系统的标准化设计与实现;②支持开发者理解和配置ECU的启动/关闭流程、通信资源调度、看门狗监控机制以及跨ECU的模式协调;③为功能安全、低功耗设计和诊断系统提供基础支撑。; 阅读建议:此文档属于AUTOSAR标准需求规格说明书,技术性强且内容详尽,建议结合相关模块的软件规范(SWS)和系统模板文档一起研读,并配合实际项目中的配置工具与代码实现进行对照理解,以掌握模式管理的整体架构与细节约束。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值