Coralberry
码龄10年
关注
提问 私信
  • 博客:19,169
    社区:1
    19,170
    总访问量
  • 24
    原创
  • 1,374,660
    排名
  • 107
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2015-09-11
博客简介:

Coralberry

查看详细资料
个人成就
  • 获得117次点赞
  • 内容获得1次评论
  • 获得136次收藏
  • 代码片获得5,291次分享
创作历程
  • 23篇
    2023年
  • 1篇
    2022年
成就勋章
TA的专栏
  • 上市公司新闻情感分析在线实验闯关
    付费
    3篇
  • 常用图像绘制在线实验闯关
    3篇
  • 图像识别案例在线实验闯关
    6篇
  • 头歌机器学习基本模型与算法在线实验闯关
    11篇
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

第3关:文本数据分类模型的构建—-支持向量机模型

支持向量机(Support Vector Machine, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,SVM学习的基本想法是求解能够正确划分训练数据集并且几何间隔最大的分离超平面。本关任务:基于情感分类标签和训练数据,计算逆向词频构造特征数据集,构建支持向量机模型,并对测试数据进行情感分类预测,返回测试集的情感分类标签值。根据提示,在右侧编辑器补充代码,用情感分类标签和训练数构建支持向量机模型,对测试数据进行情感分类预测。开始你的任务吧,祝你成功!
原创
发布博客 2023.12.11 ·
1140 阅读 ·
12 点赞 ·
0 评论 ·
12 收藏

第2关:文本数据预处理—-去停用词及数值

停用词是指在信息检索中,为节省存储空间和提高搜索效率,在处理自然语言数据(或文本)之前或之后会自动过滤掉某些字或词,这些字或词即被称为Stop Words(停用词),分词之后有很多无用字符、或一些助词包括语气助词、副词、介词、连接词等,通常自身 并无明确的意义,只有将其放入一个完整的句子中才有一定作用,如常见的“的”、“在”之类等等,这些都需去掉。本关任务:读取停用词文件‘stop_words.txt’,对分词后的训练集和测试集文本去掉停用词及数值,并对分词后的整合。开始你的任务吧,祝你成功!
原创
发布博客 2023.12.08 ·
1230 阅读 ·
10 点赞 ·
0 评论 ·
12 收藏

第1关:文本数据预处理—-分词

分词顾名思义就是将一句话或一段话划分成一个个独立的词,目前有大量用于分词的工具,如jiaba、nltk、thulac和pynlpir等,对于中文来说jieba分词效果是比较好的,本文使用Python中的jiaba库对样本数据进行分词处理,利用.cut()函数实现。造情感分类标签就是新闻训练数据集中的情感类别数据数值化,即情感类别为积极的,标记为0,情感类别为中性的,标记为1,情感类别为消极的,标记为2。为了完成本关任务,你需要掌握:1.对标题情感进行数值化处理;开始你的任务吧,祝你成功!
原创
发布博客 2023.12.08 ·
1161 阅读 ·
13 点赞 ·
0 评论 ·
10 收藏

第6关:彩色图像识别模型(拓展)

本关任务:现有1元、5元、10元、20元、50元、100元共6种面额的纸币彩色图像数据集(每种纸币按正、反面和两个不同的方向,分别采集10张图片,累计每个币种采集40张图片,6种币种合计240张图片),请计算每张图片R、G、B三个颜色通道的一阶、二阶、三阶颜色矩阵,共9个特征指标数据,记为自变量X,同时构造纸币面额标签数据集,记为因变量Y。为了完成本关任务,你需要掌握:1学会利用listdir()函数获取文件夹中彩色图像的文件名,及其完整路径,以便于对所有图片文件进行读取和处理。
原创
发布博客 2023.12.08 ·
505 阅读 ·
6 点赞 ·
0 评论 ·
8 收藏

第5关:彩色图像识别模型

第5类为绿色,采集了6张图片。对5种类型共203张图片,按照80%训练、20%测试进行随机划分,构建基于水色图像的水质识别模型。本关任务2(纸币图像识别):现有1元、5元、10元、20元、50元、100元共6种面额的纸币彩色图像数据集(每种纸币按正、反面和两个不同的方向,分别采集10张图片,累计每个币种采集40张图片,6种币种合计240张图片),请计算每张图片R、G、B三个颜色通道的一阶、二阶、三阶颜色矩阵,共9个特征指标数据,记为自变量X,同时构造纸币面额标签数据集,记为因变量Y。
原创
发布博客 2023.12.08 ·
590 阅读 ·
10 点赞 ·
0 评论 ·
8 收藏

第4关:基于像素主成分的人脸识别模型

读取机器学习包中的人脸识别图像数据集,对数据集进行探索分析,对像素特征数据做主成分分析,并提取主成分,要求累计贡献率在95%以上。基于提取的主成分数据,按80%训练和20%测试,构建支持向量机分类模型,输出模型准确率和测试数据集的预测准确率。根据提示,在右侧编辑器补充代码,按照任务要求获取数据,划分数据,利用支持分类向量机输出模型的准确率和测试集的预测准确率。本关的大体内容上与本章节的第3关类似,只是增加了主成分分析的步骤。把X,Y分别随机划分为训练集和测试集,训练集占总数据的80%,测试集占20%。
原创
发布博客 2023.12.08 ·
602 阅读 ·
7 点赞 ·
0 评论 ·
9 收藏

第3关:基于全像素特征的人脸识别模型

根据提示,在右侧编辑器补充代码,按照任务要求获取数据,划分数据,利用支持分类向量机输出模型的准确率和测试集的预测准确率。为了完成本关任务,你需要掌握:1.从机器学习包中获取人脸识别图像数据集 2.按照题目要求将数据集划分为训练数据集和测试数据集。读取机器学习包中的人脸识别图像数据集,对数据集进行探索分析,同时以80%训练和20%测试,构建支持向量机分类模型,输出模型的准确率和测试数据集的预测准确率。把X,Y分别随机划分为训练集和测试集,训练集占总数据的80%,测试集占20%。开始你的任务吧,祝你成功!
原创
发布博客 2023.12.08 ·
561 阅读 ·
7 点赞 ·
0 评论 ·
11 收藏

第2关:基于全像素特征的手写体图像识别模型

把X,Y分别随机划分为训练集和测试集,训练集占总数据的80%,测试集占20%。(test_size为测试集所占的比例)根据提示,在右侧编辑器补充代码,按照任务要求获取数据,划分数据,利用支持分类向量机输出模型的准确率和测试集的预测准确率。构建支持向量机分类模型,利用随机分配的80%的数据对向量机模型进行训练。开始你的任务吧,祝你成功!
原创
发布博客 2023.12.06 ·
513 阅读 ·
8 点赞 ·
0 评论 ·
6 收藏

第1关:手写体图像数据集初识

读取机器学习包中的手写体数字图像数据集,并对数据集进行初步探索分析,并在控制台中输出探索结果,包括图像像素数据集大小、图像标签取值,同时将第1个图像绘制出来。为了完成本关任务,你需要掌握:1.调用机器学习包中的手写体数字图像数据集 2.输出图像像素数据集大小、图像标签取值 3.利用Matplotlib进行绘图。sklearn包中含有多种数据集,我们所需要的为load_digits(手写数字数据集)根据提示,在右侧编辑器补充代码,输出。-- 开始你的任务吧,祝你成功!
原创
发布博客 2023.12.06 ·
670 阅读 ·
9 点赞 ·
0 评论 ·
6 收藏

第6关:箱线图绘制

箱线图是利用数据中的最小值、上分位数、中位数、下四分位数与最大值这5个统计量描述连续型特征变量的一种方法。本关任务:读取 “各站点各时刻进出站客流数据.xlsx”,绘制各站点在 9 时刻进站客流的箱线图。为了完成本关任务,你需要掌握:1.如何读取数据和切片,2.如何绘制箱线图。根据提示,在右侧编辑器补充代码,并绘制出箱线图。开始你的任务吧,祝你成功!
原创
发布博客 2023.11.28 ·
583 阅读 ·
10 点赞 ·
0 评论 ·
9 收藏

第2关:线性图绘制

线性图的绘图函数为plot(x,y,[可选项]),其中x表示横轴坐标数据列,y表示纵轴坐标数据列,可选项为绘图设置,可通过title()函数来设置图标题,xlabel()和ylabel()函数来设置横轴和纵轴。中文字符的显示通过rcParams参数设置。本关任务:读取 “各站点各时刻进出站客流数据.xlsx”,绘制站点 155 各时刻进站客流线形图。为了完成本关任务,你需要掌握:1.如何读取数据和切片,2.如何绘制线性图。根据提示,在右侧编辑器补充代码,并绘制出线性图。开始你的任务吧,祝你成功!
原创
发布博客 2023.11.28 ·
707 阅读 ·
9 点赞 ·
0 评论 ·
14 收藏

第7关:子图绘制

子图是指在同一个绘图界面上,绘制不同类型的图像。通过子图,可以在同一个界面上实现多种不同类型图像之间的比较,从而提高了数据的可读性和可视化效果。subplot()函数,其调用形式为将figure画布分成a行b列矩阵形式的方格图形,并在第c个方格图形(按行顺序数)上绘制图像。本关任务:读取 “各站点各时刻进出站客流数据.xlsx”,将 155、157、151、123 四个站点在各时刻的进站客流,用一个 2*2 的子图,绘制其线性图。为了完成本关任务,你需要掌握:1.如何读取数据和切片,2.如何绘制子图。
原创
发布博客 2023.11.28 ·
651 阅读 ·
4 点赞 ·
0 评论 ·
9 收藏

机器学习基本模型与算法在线实验闯关

机器学习基本模型与算法在线实验闯关第10关:K均值聚类算法及其应用
原创
发布博客 2023.11.14 ·
765 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

机器学习基本模型与算法在线实验闯关

头歌机器学习基本模型与算法在线实验闯关第6关:线性回归模型及其应用
原创
发布博客 2023.11.14 ·
688 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

机器学习基本模型与算法在线实验闯关

头歌机器学习基本模型与算法在线实验闯关第12关:基于布尔数据集的一对一和多对一关联规则挖掘
原创
发布博客 2023.11.14 ·
800 阅读 ·
7 点赞 ·
0 评论 ·
2 收藏

机器学习基本模型与算法在线实验闯关

头歌机器学习基本模型与算法在线实验闯关第11关:布尔数据集构建
原创
发布博客 2023.11.14 ·
923 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

机器学习基本模型与算法在线实验闯关

头歌机器学习基本模型与算法在线实验闯关第9关:基于主成分分析的综合评价
原创
发布博客 2023.11.14 ·
639 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

机器学习基本模型与算法在线实验闯关

头歌机器学习基本模型与算法在线实验闯关第7关:神经网络回归模型及其应用
原创
发布博客 2023.11.14 ·
796 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

机器学习基本模型与算法在线实验闯关

头歌机器学习基本模型与算法在线实验闯关第8关:支持向量机回归模型及其应用
原创
发布博客 2023.11.14 ·
752 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

机器学习基本模型与算法在线实验闯关

头歌机器学习基本模型与算法在线实验闯关第5关:神经网络分类模型及其应用
原创
发布博客 2023.11.13 ·
1591 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏
加载更多