由于线性代数在本科阶段系统地学习过,所以这一章所做的笔记不多,仅是我认为有点重要的。
矩阵:由数字组成的矩形阵列,写于方括号内。
注:下面的矩阵都用一个中括号表示一行。
A= [1 2 3]
[4 5 6] 这为一个2*3的矩阵。
而对于矩阵中的元素则用下标表示,eg A11=1 A12=2。
而对于向量来说就是,向量就是特殊的矩阵,只有一列。
eg y=[1]
[2]
[3]
总体来说,用大写字母表示矩阵,小写字母表示向量,而对于元素则是采用以下标的方式展示。矩阵为Axy 向量为y1.
向量的运算法则就不再单独列出。只列出觉得有意义的。
矩阵的乘法特征:矩阵乘法无交换律(因其交换后得出的结果与交换前并不相同),但矩阵的乘法有分配律(eg. A*B*C=A*(B*C))。
单位矩阵:对角线上的元素值均为“1”,而其他位置为0。单位阵与任何矩阵相乘,结果仍然是该矩阵。
逆矩阵:一个矩阵乘以其逆矩阵那么结果为其对应的单位阵。(实际上只有方阵才有逆矩阵)。
矩阵转置:eg [1,2]
[3,4]
[5,6] 其转置后如下。[1,3,5]
[2,4,6]
以常规来说就是行列互换。

417

被折叠的 条评论
为什么被折叠?



