吴恩达机器学习第三章--简单回顾线性代数

由于线性代数在本科阶段系统地学习过,所以这一章所做的笔记不多,仅是我认为有点重要的。

矩阵:由数字组成的矩形阵列,写于方括号内。

注:下面的矩阵都用一个中括号表示一行。

           A=        [1 2 3]

                       [4 5 6]  这为一个2*3的矩阵。

而对于矩阵中的元素则用下标表示,eg A11=1    A12=2。

而对于向量来说就是,向量就是特殊的矩阵,只有一列。

       eg y=[1]

                [2]

                [3]

总体来说,用大写字母表示矩阵,小写字母表示向量,而对于元素则是采用以下标的方式展示。矩阵为Axy    向量为y1.

向量的运算法则就不再单独列出。只列出觉得有意义的。

 矩阵的乘法特征:矩阵乘法无交换律(因其交换后得出的结果与交换前并不相同),但矩阵的乘法有分配律(eg. A*B*C=A*(B*C))。

单位矩阵:对角线上的元素值均为“1”,而其他位置为0。单位阵与任何矩阵相乘,结果仍然是该矩阵。

逆矩阵:一个矩阵乘以其逆矩阵那么结果为其对应的单位阵。(实际上只有方阵才有逆矩阵)。

矩阵转置:eg    [1,2]

                       [3,4]

                       [5,6]     其转置后如下。[1,3,5]

                                                            [2,4,6]

                      以常规来说就是行列互换。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值