Minskyli

有多勤奋,有多幸运

Ubuntu16.04+1080ti+cuda8.0+cudnn6.0+Anaconda3+opencv3+pytorch+tensorflow-gpu+pycharm配置

总体流程

  1. 安装Ubuntu16.04及显卡驱动

  2. 安装CUDA8.0、CUDNN6.0、Anaconda3

  3. 安装pytorch,安装tensorflow,安装opencv3,配置pycharm

安装Ubuntu16.04及显卡驱动

安装ubuntu16.04系统就不详细解释,网上有相关教程,可以点这里,建议选择语言为英文。
这里详细说明显卡驱动安装流程:
安装显卡驱动的大致流程为:进入命令行终端 –> 禁用lightdm桌面服务 –> 安装驱动 –> 启用lightdm桌面服务 –> 重启进入BIOS关闭secure boot –> 重启电脑
最重要的步骤为:重启进入BIOS关闭secure boot,此步若不操作,驱动将不会起效!
1. ubuntu系统安装完毕后,启动时会进入X桌面,可以用U盘将所有提前下载好的驱动、CUDA安装文件、CUDNN安装文件、anaconda3安装包等等文件拷贝到电脑中。
2. 禁用nouveau驱动。ubuntu默认使用自带的nouveau驱动,在安装NVIDIA驱动前,要先禁止nouveau驱动。

禁用nouveau驱动


3. 添加ppa库,通过ppa安装显卡驱动,注意不要从NVIDIA官网下载显卡驱动,直接通过ppa安装即可:

sudo add-apt-repository ppa:graphics-drivers/ppa

sudo apt-get update

sudo apt-get install nvidia-396

可根据ppa显卡驱动的网址来查看最新显卡驱动的安装序号,我安装的此时最新的nvidia-396。
若要测试是否安装成功,此时输入nvidia-smi会提示无此命令,驱动没有安装好。这个提示是正常的,因为我们实际上还没正式在BIOS禁用secure boot,现在先可以忽略这个警告。

禁用Secure Boot

ubuntu16.04有个重要的特性,就是如果需要安装第三方显卡驱动(NVIDIA的就是第三方显卡驱动),就必须在BIOS中禁用“安全启动”模式(secure boot),否则第三方显卡驱动将无法被启动!
输入sudo reboot重启电脑,电脑重启的那一刻,按下F2或者DEL键进入华硕的BIOS,这里只以华硕X99-E WS主板为例,其它主板请参考各自进入BIOS的方式。
1. 进入BIOS,点击BOOT(启动)菜单栏,往下选择“Secure Boot”:

2. 进入Secure Boot界面后,光标移动至“OS type”,选择为“Other OS”:

然后点击“Key Management”,进入界面。
3. 选择“Clear Secure Root Keys”,删除安全启动密钥,删除后就能禁止secure boot。

按下yes或comfirm,确认删除:

4. 按下F10,确认保存设置并重启电脑:

成功禁用secure boot之后,重启就能回到X桌面,Ctrl + Alt + T,调出命令行,输入nvidia-smi就能看见驱动信息:
这里写图片描述
恭喜你!已经成功安装显卡驱动。

安装Anaconda3、CUDA8.0、cudnn6.0、opencv3

安装anaconda3

首先点击这里,选择Python3.6-64-Bit (x86) Installer (551 MB) 。
然后cd进Anaconda3-5.0.1-Linux-x86_64.sh的下载的目录下。

chmod +x Anaconda3-5.0.1-Linux-x86_64.sh

./Anaconda3-5.0.1-Linux-x86_64.sh

然后一路yes到底,确认操作即可。
然后配置环境变量,命令行输入sudo vi ~/.bashrc
在底部插入以下这一句:export PATH=/home/ubuntu/anaconda3/bin:$PATH
然后按ESC,shift+zz/ZZ退出vim
然后输入:source ~/.bashrc,使其生效
然后可以输入:conda list python查看python版本

安装CUDA8.0

首先点击这里,选择Linux-x86_64-Ubuntu-16.04-runfile(local)进行下载。
然后cd进cuda的下载的目录下。
输入:sudo sh cuda_8.0.61_375.26_linux.run进行CUDA安装。
安装过程中会提示你进行一些确认操作,首先是接受服务条款,输入accept确认,然请注意,当询问是否安装附带的驱动时,一定要选N!我们在第一部分已经安装好最新的驱动,附带的驱动是旧版本的而且会有问题,所以不要选择安装驱动。然后会提示是否安装cuda tookit、cuda-example等,均输入Y进行确定。
然后利用CUDA-samples进行测试。

最后是配置环境变量,此步很重要,不配置环境变量系统将无法知道CUDA是否被安装:
先输入:cd ~
然后输入:sudo gedit /etc/profile,在底部插入以下两句话:

export PATH=/usr/local/cuda-8.0/bin:$PATH

export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64:$LD_LIBRARY_PATH

保存退出,最后输入:source /etc/profile,使设置生效。

安装cudnn6.0

CUDNN是NVIDIA用于加速深度学习的模块,装完CUDA之后就要装这个,首先点击这里,然后注册,登陆,填写调查问卷,然后选择Download cuDNN v6.0 (April 27, 2017), for CUDA 8.0-cuDNN v6.0 Library for Linux进行下载。
然后cd进cudnn的下载的目录下,输入:

tar -xzf cudnn-8.0-linux-x64-v5.1.tgz

cd cuda

sudo cp lib64/* /usr/local/cuda/lib64/

sudo cp include/* /usr/local/cuda/include/

CUDNN就这样安装完毕。

安装pytorch,安装tensorflow,安装opencv,配置pycharm

安装pytorch

输入:conda install pytorch torchvision cuda80 -c pytorch即可。
我安装的版本为pytorch-0.3.1,torchvision-0.2.0。
随着提示,输入’y’,即安装成功。

安装tensorflow-gpu

tensorflow官网的安装中写了cuda_command_tools的安装,但是在安装cuda的时候,这个应该是被遗弃安装进来了,所以并不需要按照他给丁的方法进行安装,直接将环境写入路径即可:sudo gedit /etc/profile在最后写入:
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH:+${LD_LIBRARY_PATH}:}/usr/local/cuda/extras/CUPTI/lib64
先检查pip是否是anaconda的pip:pip -V
然后安装tensorflow-gpu:pip install tensorflow-gpu

安装opencv3.3.1

输入:pip install opencv-python,然后按要求看是否要更新pip,若需要更新则输入:
pip install --upgrade pip
即安装成功。

配置pycharm

首先点击这里,选择coummunity社区免费版本,下载。
然后cd进pycharm的下载目录下,输入:

tar -xzf pycharm-community-2018.1.1.tar.gz

cd pycharm-community-2018.1.1/bin

sh ./pycharm.sh

如果需要保留原来版本的配置,则选择第一个,否则选择第二个,这里我选择第二个。
然后将说明翻到最下面,选择Accept。
安装完成后,会弹出PyCharm Initial Configuration框,PyCharm初始化配置。
Keymap scheme:键盘方案,选择Eclipse,意思是设置Pycharm为Eclipse快捷键
ide theme:皮肤主题,默认Intellij。可根据自己喜欢选其他的
Editor colors and fonts:编辑器的主题,可以点击下面的“Click to hide preview”进行预览,我这里选择的是 Darcula
然后下面的Create desktop entry 默认打勾就行了
最后点击OK,完成设置,这样pycharm就安装好了。然后就是配置pycharm
1. 点击File-Default Settings-Project Interpreter
2. 选择Project Interpreter最右边的设置,选择Add..,选择System interpreter,右边的路径选择anaconda3/bin/python3.6,选择OK
3. 选择绿标“+”号,搜索pytorch,然后出现pytorch-gpu,选择Install Package
4. 搜索opencv,然后出现opencv,选择Install Package
5. 搜索tensor flow,然后出现tensorflow-gpu,选择Install Package
至此,全部结束,happy start!

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_31531635/article/details/79963188
个人分类: 深度学习
想对作者说点什么? 我来说一句

liferay-portal-tomcat-5.5-5.1.1

2009年07月07日 2.05MB 下载

svnmanager 配置 svnmanager 配置

2011年06月22日 11.04MB 下载

StarTeam 配置

2009年03月06日 256KB 下载

GLBP配置shili

2010年03月12日 30KB 下载

iis配置ftp的应用详解

2010年05月11日 1KB 下载

was jms配置详细说明

2009年12月26日 96KB 下载

jndi配置

2010年05月19日 2KB 下载

没有更多推荐了,返回首页

不良信息举报

Ubuntu16.04+1080ti+cuda8.0+cudnn6.0+Anaconda3+opencv3+pytorch+tensorflow-gpu+pycharm配置

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭