计算机中的图像是什么?

图像处理和“理解”是计算机视觉(Computer Vision)的核心领域。理解图像如何被表示,是第一步也是最关键的一步。

1. 计算机如何“看见”图像

所有图像都是“数据”,以某种数据结构被存储和处理的一组组数字。根据表示方式的不同,图像可以分为位图矢量图两大类。

1.1 位图

可以把位图想象成一幅巨大的“十字绣”或“乐高拼图”,每一格都有自己的颜色。

  • 位图又称为栅格图像,图像是由多个小方块组成的网格。每个小方块(像素,Pixel = Picture Element)有特定的位置和颜色值。
  • 计算机记录存储网格的宽度、高度和每个像素的颜色。
  • 位图包含的像素总量是确定的。当放大时,计算机通过算法填充新的图像,图像变模糊,出现马赛克。
  • 位图适合表现细腻的色彩图片。

图像的分辨率描述的就是像素的排列方式,即图像的宽度和高度分别有多少个像素点。
分辨率 = 图像宽度(像素) × 图像高度(像素)
比如 1920 × 1080, 表示图像宽 1920 像素、高 1080 像素,总像素数 = 1920 × 1080 = 2,073,600

分辨率定义了像素的排列网格,像素总数是分辨率的计算结果

比如一个3×3 的黑白小图:
[][][]
[][][]
[][][]
在计算机中,可以被表示为一个3×3 的矩阵:
[[255,   0, 255],
 [  0, 255,   0],
 [255,   0, 255]]

在计算机中,位图 是由像素组成的图像。根据每个像素所包含的颜色信息不同,位图可以分为三类:

1. 二值图像(Binary Image)
2. 灰度图像(Grayscale Image)
3. 彩色图像(Color Image)

1.1.1 二值图像

二值图像是一种最简单的图像形式,每个像素只有两种可能的取值:0 或 1(通常表示为黑色或白色)。它也被称为黑白图像。

  • 每个像素用1位(bit)表示,取值范围:0 ~1
  • 单通道(Channel = 1)
  • 存储空间少、速度快、常用于分割结果

1.1.2 灰度图像

灰度图像是介于二值图像和彩色图像之间的中间形态。每个像素表示亮度(明暗程度),而不是颜色。像素值越大越亮,越小越暗。

  • 每个像素使用 8 位(bit) 表示 → 取值范围:0 ~ 255
  • 单通道(Channel = 1)
  • 比彩色图节省空间、保留明暗细节
  • 比如过去的黑白照片、黑白电影

1.1.3 彩色图像

常用的色彩模型是 RGB 模型(Red, Green, Blue),通过三种颜色通道的不同强度组合出不同种颜色。

  • 每个像素用24 位(bit)表示,(R,G,B) 各0~255
  • 三个通道(Channel = 3)

1.1.4 常见位图格式及特点

格式全称是否压缩是否支持透明典型用途
JPG / JPEGJoint Photographic Experts Group有损压缩❌ 不支持照片、网页图片
PNGPortable Network Graphics无损压缩✅ 支持图标、透明背景图
GIFGraphics Interchange Format有损✅ 支持动画、简单图形
BMPBitmap File Format无压缩✅ 支持Windows 原生图像
WebPGoogle 开发的新格式有/无损可选✅ 支持网页优化图像

1.2 矢量图

矢量图不是由像素构成,而是通过数学公式来描述图形的形状、位置、颜色等属性。比如一条直线可以用两个端点坐标 (x1,y1) 和 (x2,y2) 表示;一个圆可以用圆心 (cx,cy) 和半径 r 描述。

  • 用数学公式来定义图形中的形状、线条和颜色。
  • 由路径构成,路径由点线和它们之间的数学关系构成。计算机存储的是图形的绘制指令
  • 矢量图与分辨率无关,放大时计算机会根据数学公式重新计算并渲染图形,因此不会失真。
  • 矢量图文件体积较小,不适合表现细腻的色彩图片。

1.3 位图和矢量对比

位图矢量图
组成像素数学路径(点、线、曲线)
缩放放大失真任意缩放不失真
文件大小分辨率越高文件越大一般较小
色彩丰富度高,适合真实图像有限(适合纯色扁平化设计)
编辑灵活性难以局部修改易于拆分、重着色、变形
在计算机视觉主要研究对象(图像识别、分割等)较少,一般转为位图处理
【无线传感器】使用 MATLAB和 XBee连续监控温度传感器无线网络研究(Matlab代码实现)内容概要:本文围绕使用MATLAB和XBee技术实现温度传感器无线网络的连续监控展开研究,介绍了如何构建无线传感网络系统,并利用MATLAB进行数据采集、处理与可视化分析。系统通过XBee模块实现传感器节点间的无线通信,实时传输温度数据至主机,MATLAB负责接收并处理数据,实现对环境温度的动态监测。文中详细阐述了硬件连接、通信协议配置、数据解析及软件编程实现过程,并提供了完整的MATLAB代码示例,便于读者复现和应用。该方案具有良好的扩展性和实用性,适用于远程环境监测场景。; 适合人群:具备一定MATLAB编程基础和无线通信基础知识的高校学生、科研人员及工程技术人员,尤其适合从事物联网、传感器网络相关项目开发的初学者与中级开发者。; 使用场景及目标:①实现基于XBee的无线温度传感网络搭建;②掌握MATLAB与无线模块的数据通信方法;③完成实时数据采集、处理与可视化;④为环境监测、工业测控等实际应用场景提供技术参考。; 阅读建议:建议读者结合文中提供的MATLAB代码与硬件连接图进行实践操作,先从简单的点对点通信入手,逐步扩展到多节点网络,同时可进一步探索数据滤波、异常检测、远程报警等功能的集成。
内容概要:本文系统讲解了边缘AI模型部署与优化的完整流程,涵盖核心挑战(算力、功耗、实时性、资源限制)与设计原则,详细对比主流边缘AI芯片平台(如ESP32-S3、RK3588、Jetson系列、Coral等)的性能参数与适用场景,并以RK3588部署YOLOv8为例,演示从PyTorch模型导出、ONNX转换、RKNN量化到Tengine推理的全流程。文章重点介绍多维度优化策略,包括模型轻量化(结构选择、输入尺寸调整)、量化(INT8/FP16)、剪枝与蒸馏、算子融合、批处理、硬件加速预处理及DVFS动态调频等,显著提升帧率并降低功耗。通过三个实战案例验证优化效果,最后提供常见问题解决方案与未来技术趋势。; 适合人群:具备一定AI模型开发经验的工程师,尤其是从事边缘计算、嵌入式AI、计算机视觉应用研发的技术人员,工作年限建议1-5年;熟悉Python、C++及深度学习框架(如PyTorch、TensorFlow)者更佳。; 使用场景及目标:①在资源受限的边缘设备上高效部署AI模型;②实现高帧率与低功耗的双重优化目标;③掌握从芯片选型、模型转换到系统级调优的全链路能力;④解决实际部署中的精度损失、内存溢出、NPU利用率低等问题。; 阅读建议:建议结合文中提供的代码实例与工具链(如RKNN Toolkit、Tengine、TensorRT)动手实践,重点关注量化校准、模型压缩与硬件协同优化环节,同时参考选型表格匹配具体应用场景,并利用功耗监测工具进行闭环调优。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值