详情请看:https://www.aboutyun.com/forum.php?mod=viewthread&tid=29104
直接上代码:
已经验证过json paquet 等数据格式写入,在本地磁盘生成了文件。要注意的是要注意导入依赖:


package flinksql;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import java.sql.Timestamp;
/**
* @author zhangjun 欢迎关注我的公众号[大数据技术与应用实战],获取更多精彩实战内容
* <p>
* 流式数据以sql的形式写入file
*/
public class StreamingWriteFile {
public static void main(String[] args) throws Exception{
StreamExecutionEnvironment bsEnv = StreamExecutionEnvironment.getExecutionEnvironment();
EnvironmentSettings bsSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();
bsEnv.enableCheckpointing(10000);
StreamTableEnvironment bsTableEnv = StreamTableEnvironment.create(bsEnv, bsSettings);
DataStream<UserInfo> dataStream = bsEnv.addSource(new MySource());
String sql = "CREATE TABLE fs_table (\n" +
" user_id STRING,\n" +
" order_amount DOUBLE,\n" +
" dt STRING," +
" h string," +
" m string \n" +
") PARTITIONED BY (dt,h,m) WITH (\n" +
" 'connector'='filesystem',\n" +
" 'path'='file:///G:\\汪小剑的文件夹\\flink_test\\',\n" +
" 'format'='json'\n" +
")";
bsTableEnv.executeSql(sql);
bsTableEnv.createTemporaryView("users", dataStream);
String insertSql = "insert into fs_table SELECT userId, amount, " +
" DATE_FORMAT(ts, 'yyyy-MM-dd'), DATE_FORMAT(ts, 'HH'), DATE_FORMAT(ts, 'mm') FROM users";
bsTableEnv.executeSql(insertSql);
}
public static class MySource implements SourceFunction<UserInfo>{
String userids[] = {
"4760858d-2bec-483c-a535-291de04b2247", "67088699-d4f4-43f2-913c-481bff8a2dc5",
"72f7b6a8-e1a9-49b4-9a0b-770c41e01bfb", "dfa27cb6-bd94-4bc0-a90b-f7beeb9faa8b",
"aabbaa50-72f4-495c-b3a1-70383ee9d6a4", "3218bbb9-5874-4d37-a82d-3e35e52d1702",
"3ebfb9602ac07779||3ebfe9612a007979", "aec20d52-c2eb-4436-b121-c29ad4097f6c",
"e7e896cd939685d7||e7e8e6c1930689d7", "a4b1e1db-55ef-4d9d-b9d2-18393c5f59ee"
};
@Override
public void run(SourceContext<UserInfo> sourceContext) throws Exception{
while (true){
String userid = userids[(int) (Math.random() * (userids.length - 1))];
UserInfo userInfo = new UserInfo();
userInfo.setUserId(userid);
userInfo.setAmount(Math.random() * 100);
userInfo.setTs(new Timestamp(System.currentTimeMillis()));
sourceContext.collect(userInfo);
Thread.sleep(100);
}
}
@Override
public void cancel(){
}
}
public static class UserInfo implements java.io.Serializable{
private String userId;
private Double amount;
private Timestamp ts;
public String getUserId(){
return userId;
}
public void setUserId(String userId){
this.userId = userId;
}
public Double getAmount(){
return amount;
}
public void setAmount(Double amount){
this.amount = amount;
}
public Timestamp getTs(){
return ts;
}
public void setTs(Timestamp ts){
this.ts = ts;
}
}
}
FlinkSQL 在hive中创建空表
// TODO: 2020/7/13 创建表 String hiveSql = "CREATE external TABLE test_table (\n" + " aaa STRING,\n" + " bbb DOUBLE" + ") partitioned by (dt string,h string,m string) " + "stored as ORC " + "TBLPROPERTIES (\n" + " 'partition.time-extractor.timestamp-pattern'='$dt $h:$m:00',\n" + " 'sink.partition-commit.delay'='0s',\n" + " 'sink.partition-commit.trigger'='partition-time',\n" + " 'sink.partition-commit.policy.kind'='metastore'" + ")"; tEnv.executeSql(hiveSql);
2231

被折叠的 条评论
为什么被折叠?



