本文主要内容
- 4中方式实现计数器功能,对比其性能
- 介绍LongAdder
- 介绍LongAccumulator
需求:一个jvm中实现一个计数器功能,保证多线程情况下数据正确性
我们来模拟50个线程,每个线程对计数器递增100万次,最终结果应该是5000万
我们使用4中方式实现,看一下其性能,然后引出为什么需要使用LongAdder,LongAccumulator。
方式1:synchronized方式实现
public class Demo1 {
static int count = 0;
public static synchronized void incr() {
count++;
}
public static void main(String[] args) throws ExecutionException, InterruptedException {
for (int i = 0; i < 10; i++) {
count = 0;
m1();
}
}
private static void m1() throws InterruptedException {
long t1 = System.currentTimeMillis();
int threadCount = 50;
CountDownLatch countDownLatch = new CountDownLatch(threadCount);
for (int i = 0; i < threadCount; i++) {
new Thread(() -> {
try {
for (int j = 0; j < 1000000; j++) {
incr();
}
} finally {
countDownLatch.countDown();
}
}).start();
}
countDownLatch.await();
long t2 = System.currentTimeMillis();
System.out.println(String.format("结果:%s,耗时(ms):%s", count, (t2 - t1)));
}
}
输出:
结果:50000000,耗时(ms):2071
结果:50000000,耗时(ms):2105
结果:50000000,耗时(ms):2081
结果:50000000,耗时(ms):2124
结果:50000000,耗时(ms):1982
结果:50000000,耗时(ms):2091
平均耗时:2秒
方式2:AtomicLong实现
public class Demo2 {
static AtomicLong count = new AtomicLong(0);
public static void incr() {
count.incrementAndGet();
}
public static void main(String[] args) throws ExecutionException, InterruptedException {
for (int i = 0; i < 10; i++) {
count.set(0);
m1();
}
}
private static void m1() throws InterruptedException {
long t1 = System.currentTimeMillis();
int threadCount = 50;
CountDownLatch countDownLatch = new CountDownLatch(threadCount);
for (int i = 0; i < threadCount; i++) {
new Thread(() -> {
try {
for (int j = 0; j < 1000000; j++) {
incr();
}
} finally {
countDownLatch.countDown();
}
}).start();
}
countDownLatch.await();
long t2 = System.currentTimeMillis();
System.out.println(String.format("结果:%s,耗时(ms):%s", count, (t2 - t1)));
}
}
输出:
结果:50000000,耗时(ms):1225
结果:50000000,耗时(ms):1173
结果:50000000,耗时(ms):1196
结果:50000000,耗时(ms):1187
结果:50000000,耗时(ms):1238
结果:50000000,耗时(ms):1264
平均耗时1秒
方式3:LongAdder实现
先介绍一下LongAdder
,说到LongAdder,不得不提的就是AtomicLong,AtomicLong是JDK1.5开始出现的,里面主要使用了一个long类型的value作为成员变量,然后使用循环的CAS操作去操作value的值,并发量比较大的情况下,CAS操作失败的概率较高,内部失败了会重试,导致耗时可能会增加。
LongAdder是JDK1.8开始出现的,所提供的API基本上可以替换掉原先的AtomicLong。LongAdder在并发量比较大的情况下,操作数据的时候,相当于把这个数字分成了很多份数字,然后交给多个人去管控,每个管控者负责保证部分数字在多线程情况下操作的正确性。当多线程访问的时,通过hash算法映射到具体管控者去操作数据,最后再汇总所有的管控者的数据,得到最终结果。相当于降低了并发情况下锁的粒度,所以效率比较高,看一下下面的图,方便理解:
public class Demo3 {
static LongAdder count = new LongAdder();
public static void incr() {
count.increment();
}
public static void main(String[] args) throws ExecutionException, InterruptedException {
for (int i = 0; i < 6; i++) {
count.reset();
m1();
}
}
private static void m1() throws ExecutionException, InterruptedException {
long t1 = System.currentTimeMillis();
int threadCount = 50;
CountDownLatch countDownLatch = new CountDownLatch(threadCount);
for (int i = 0; i < threadCount; i++) {
new Thread(() -> {
try {
for (int j = 0; j < 1000000; j++) {
incr();
}
} finally {
countDownLatch.countDown();
}
}).start();
}
countDownLatch.await();
long t2 = System.currentTimeMillis();
System.out.println(String.format("结果:%s,耗时(ms):%s", count.sum(), (t2 - t1)));
}
}
输出:
结果:50000000,耗时(ms):206
结果:50000000,耗时(ms):208
结果:50000000,耗时(ms):200
结果:50000000,耗时(ms):210
结果:50000000,耗时(ms):198
结果:50000000,耗时(ms):206
代码中new LongAdder()
创建一个LongAdder对象,内部数字初始值是0,调用increment()
方法可以对LongAdder内部的值原子递增1。reset()
方法可以重置LongAdder
的值,使其归0。
方式4:LongAccumulator实现
LongAccumulator是LongAdder的功能增强版。LongAdder的API只有对数值的加减,而LongAccumulator提供了自定义的函数操作,其构造函数如下:
/**
* accumulatorFunction:需要执行的二元函数(接收2个long作为形参,并返回1个long)
* identity:初始值
**/
public LongAccumulator(LongBinaryOperator accumulatorFunction, long identity) {
this.function = accumulatorFunction;
base = this.identity = identity;
}
public class Demo4 {
static LongAccumulator count = new LongAccumulator((x, y) -> x + y, 0L);
public static void incr() {
count.accumulate(1);
}
public static void main(String[] args) throws ExecutionException, InterruptedException {
for (int i = 0; i < 6; i++) {
count.reset();
m1();
}
}
private static void m1() throws ExecutionException, InterruptedException {
long t1 = System.currentTimeMillis();
int threadCount = 50;
CountDownLatch countDownLatch = new CountDownLatch(threadCount);
for (int i = 0; i < threadCount; i++) {
new Thread(() -> {
try {
for (int j = 0; j < 1000000; j++) {
incr();
}
} finally {
countDownLatch.countDown();
}
}).start();
}
countDownLatch.await();
long t2 = System.currentTimeMillis();
System.out.println(String.format("结果:%s,耗时(ms):%s", count.longValue(), (t2 - t1)));
}
}
输出:
结果:50000000,耗时(ms):238
结果:50000000,耗时(ms):211
结果:50000000,耗时(ms):211
结果:50000000,耗时(ms):203
结果:50000000,耗时(ms):203
结果:50000000,耗时(ms):205
平均耗时:100毫秒
LongAccumulator
的效率和LongAdder
差不多,不过更灵活一些。
调用new LongAdder()
等价于new LongAccumulator((x, y) -> x + y, 0L)
。
从上面4个示例的结果来看,LongAdder、LongAccumulator
全面超越同步锁及AtomicLong
的方式,建议在使用AtomicLong
的地方可以直接替换为LongAdder、LongAccumulator
,吞吐量更高一些。