1. IIR滤波器的数学表达式
区别于FIR滤波器,IIR滤波器的冲激响应是无限的。
用差分方程来表示一个滤波器,如下式所示:
y ( n ) = ∑ k = 1 N a k y ( n − k ) + ∑ k = 0 N b k x ( n − k ) y(n) = \sum_{k=1}^Na_ky(n-k)+\sum_{k=0}^Nb_kx(n-k) y(n)=k=1∑Naky(n−k)+k=0∑Nbkx(n−k)
上式是N次差分方程的表达式。我们可以看出,计算输出 y ( n ) y(n) y(n)时,需要之前时刻的输出值和输入值,即这个滤波器有反馈环节。当 a k = 0 a_k=0 ak=0时,由于没有反馈,其冲激响应是有限的,是FIR滤波器;当 a k a_k ak不为零时,是IIR滤波器。
其系统传递函数的一般形式为:
H ( z ) = ∑ k = 0 N b k z − k 1 − ∑ k = 1 N a k z − k H(z) = \frac{\sum_{k=0}^Nb_kz^{-k}}{1-\sum_{k=1}^Na_kz^{-k}} H(z)=1−∑k=1Nakz−k∑k=0Nbkz−k
2. 直接Ⅰ型滤波器
直接Ⅰ型滤波器的网络结构可以根据差分方程很直观地画出:
可以看出,直接Ⅰ型滤波器需要 N + M N+M N+M个延迟单元 ( N ≥ M ) (N≥M) (N≥M)。
3. 直接Ⅱ型滤波器
因为在线性系统中,调换单元顺序并不会改变系统的传递函数,因此我们将前馈部分和反馈部分(零点与极点)对调,于是得到了直接Ⅱ型。
我们还可以将中间的 M M M个延迟单元合并,因此只需要 N N N个延迟单元就可以构成N阶滤波器,故称为典范型。
这里需要注意一点,不同的连接结构虽然不会使得系统时域表达式与传递函数相同,但不同的网络拓扑结构代表了不同的算法。在精度无限高的情况下,每一种结构的连接对于给定输入,系统的输出总为完全相同的值,但在实际实现过程中,由于精度无法达到无限高,因此会产生噪声,此噪声影响整个系统,这被称为转置定理

949

被折叠的 条评论
为什么被折叠?



