面向对象初体验

面向对象初体验

1.面向对象的思想:
(1)面向对象和面向过程都是软件开发的一种编程思想,要真正的理解一种编程思想,或者说应用在实际的开发设计中,并不是看几本书,听我说几句就能搞定的事情,需要先了解,在实际开发中应用,这样不断的思考分析、积累,从而达到理解。
2.面向对象的案例:
(1)举个事例,现在我手上接了一个500W的项目,接下来我需要完成这个项目,现在我有两个选择:第一是自己一人开发;第二是组建团队或者说外包。
(A)一个人开发:那么我需要做的事情可能就包括了:需求搜集、分析,原型设计,项目架构设计,编码实现,项目测试,项目实施等等。其中每一件事情都必须亲力亲为,感觉心里倒也踏实,不过会把你累死在键盘上!
(B)团队开发:有了自己的团队之后,就可以不用再陪客户喝茶、聊天、吃饭、睡觉,洗脚(售前售后);不用再排异常、找bug、调网络(攻城狮);不用再反复修改设计方案版本(射鸡湿)。那么我现在做什么呢?当然是数钱啦()。其实我现在做的就是管理好我的团队,分配好任务,控制项目进度等,在整个过程中充当指挥者的角色。这就是面向对象的思想,针对某一件事来分配
(2)面向对象的理解:比如我们学生信息需要管理的信息肯定有姓名年龄性别等等等,比如现实生活中:管理学生信息,设想计算机系统如何管理学生信息,设计纸质模板,用于填写学生信息的模板,复制模板:填写具体的学生信息。而在计算机中应该设计一个模板,用于填写学生信息的模板,复制模板:填写具体的学生信息。2者有什么区别呢:(1)现实生活中:比如收集学生的情况,如果通过每个人来填写,使用纸质文件保存,不方便,
查找不方便,纸质容丢;( 老鼠 )(2)系统中管理:数据安全,不容易丢失,保存方法。这就是面向对象

【源码免费下载链接】:https://renmaiwang.cn/s/3r450 支持向量机(Support Vector Machines,SVM)是机器学习领域一种强大的监督学习算法,尤其在分类和回归问题上表现出色。本章聚焦于通过Python 3.7实现支持向量机,提供详尽的代码注解,帮助读者深入理解其工作原理。一、支持向量机基本概念支持向量机的核心思想是找到一个最优超平面,该超平面能够最大程度地将不同类别的数据分开。超平面是特征空间中的一个决策边界,它由距离最近的训练样本(即支持向量)决定。SVM的目标是最大化这些最接近样本的距离,也就是所谓的间隔。二、SVM的两种类型1. 线性SVM:当数据线性可分时,SVM可以找到一个线性超平面进行分类。2. 非线性SVM:通过核函数(如高斯核、多项式核等)将低维非线性数据映射到高维空间,从而在高维中找到一个线性超平面进行分类。三、SVM的主要组成部分1. 决策函数:SVM使用超平面作为决策边界,形式为`w·x+b=0`,其中`w`是超平面的法向量,`b`是偏置项。2. 支持向量:位于最近间隔边缘的数据点,对超平面的位置至关重要。3. 软间隔:允许一部分样本落在决策边界内,通过惩罚项C控制误分类的程度。4. 核函数:用于实现非线性分类,如高斯核(RBF,Radial Basis Function):`K(x, y) = exp(-γ||x-y||^2)`,其中γ是调整核函数宽度的参数。四、Python实现SVM在Python中,我们可以使用Scikit-Learn库来实现SVM。Scikit-Learn提供了多种SVM模型,如`svm.SVC`(用于分类)、`svm.LinearSVC`(仅线性分类)和`svm.NuSVC`(nu版本的SVM,支持类别不平衡问题)。五、SVM的训练与预测流程1. 数据预处理:将数据归一化或标准化,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值