机器学习如何分类?

按照任务类型可分为:

  • 回归模型:例如预测明天的股价。
  • 分类模型:将样本分为两类或者多类。
  • 结构化学习模型:输出的不是向量而是其他结构。

按照学习理论可分为:

  • 监督学习:学习的样本全部具有标签,训练网络得到一个最优模型。
  • 无监督学习:训练的样本全部无标签,例如聚类样本。
  • 半监督学习:训练样本部分有标签。
  • 强化学习:智能体与环境进行交互获得奖励来进行训练的一种模式,环境不会判断是否正确,而是会不断的反馈信号来评价智能体的行为。
  • 迁移学习:运用已经训练好的模型对新的样本进行学习,主要是解决问题中样本过少的问题。

hi 认识一下?

微信关注公众号:全都是码农 (allmanong)
你将获得:
关于人工智能的所有面试问题一网打尽!未来还有思维导图哦!
回复121 立即获得 已整理好121本python学习电子书
回复89 立即获得 程序员史诗级必读书单吐血整理四个维度系列89本书。
回复167 立即获得 机器学习和python学习之路史上整理大数据技术书从入门到进阶最全本(66本)
回复18 立即获得 数据库从入门到进阶必读18本技术书籍网盘整理电子书(珍藏版)
回复56 立即获得 我整理的56本算法与数据结构
未来还有人工智能研究生课程笔记等等,我们一起进步呀!

©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值