1、softmax交叉熵损失函数
tf.nn.softmax_cross_entropy_with_logits(logits= Network.out, labels= Labels_onehot)
参数为网络最后一层的output和经过ont-hot编码的lables数据,softmax把一个k维的真实值向量,映射成一个每个值都是0-1区间的k维向量,可以取权重最大的一维进行多分类的任务。
2、稀疏softmax交叉熵损失函数
tf.nn.sparse_softmax_cross_entropy_with_logits (logits=Network.out, labels= Labels)
参数为网络最后一层的output和没有经过ont-hot编码的lables数据
3、sigmoid交叉熵损失函数:先进行sigmoid操作之后再计算交叉熵的损失函数
tf.nn. sigmoid_cross_entropy_with_logits (logits= Network.out, labels= Labels_onehot)
参数和 softmax 交叉熵损失函数一致,sigmoid将一个真实值标量映射到(0,1)的区间,用来做二分类任务。
4、带权重的交叉熵损失函数
tf.nn.weighted_cross_entropy_with_logits (logits=Network.out, labels=Labels_onehot, pos_weight=decimal_number)
加入一个pos_weight系数,可以适当的增大或者缩小正样本的loss,一定程度上解决正负样本数量差距过大的问题。
本文详细介绍了四种常见的深度学习损失函数:softmax交叉熵、稀疏softmax交叉熵、sigmoid交叉熵和带权重的交叉熵损失函数。这些函数在多分类、二分类及正负样本不均衡等问题中扮演关键角色。
1153

被折叠的 条评论
为什么被折叠?



