tensorflow损失函数

本文详细介绍了四种常见的深度学习损失函数:softmax交叉熵、稀疏softmax交叉熵、sigmoid交叉熵和带权重的交叉熵损失函数。这些函数在多分类、二分类及正负样本不均衡等问题中扮演关键角色。
摘要由CSDN通过智能技术生成

1、softmax交叉熵损失函数

tf.nn.softmax_cross_entropy_with_logits(logits= Network.out, labels= Labels_onehot)

参数为网络最后一层的output和经过ont-hot编码的lables数据,softmax把一个k维的真实值向量,映射成一个每个值都是0-1区间的k维向量,可以取权重最大的一维进行多分类的任务。

 

2、稀疏softmax交叉熵损失函数

tf.nn.sparse_softmax_cross_entropy_with_logits (logits=Network.out, labels= Labels)

参数为网络最后一层的output和没有经过ont-hot编码的lables数据

 

3、sigmoid交叉熵损失函数:先进行sigmoid操作之后再计算交叉熵的损失函数

tf.nn. sigmoid_cross_entropy_with_logits (logits= Network.out, labels= Labels_onehot)

参数和 softmax 交叉熵损失函数一致,sigmoid将一个真实值标量映射到(0,1)的区间,用来做二分类任务。

 

4、带权重的交叉熵损失函数

tf.nn.weighted_cross_entropy_with_logits (logits=Network.out, labels=Labels_onehot, pos_weight=decimal_number)

加入一个pos_weight系数,可以适当的增大或者缩小正样本的loss,一定程度上解决正负样本数量差距过大的问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值