引言
随着开源大模型的普及,DeepSeek系列模型凭借其高效的推理能力和广泛的应用场景备受关注。然而,如何通过Ollama框架实现GPU与CPU的协同工作以最大化性能,仍是许多开发者的痛点。本文将结合实践案例和技术细节,分享从环境配置到调优策略的全流程方案。
一、环境配置与硬件适配
1. 基础依赖安装
- Ollama安装:通过官方脚本快速部署,支持Linux、Windows和macOS系统。例如在Ubuntu中使用命令
sudo snap install ollama
,Windows则需设置环境变量OLLAMA_HOST=0.0.0.0
以启用远程访问。 - GPU驱动适配:
- NVIDIA显卡:需安装CUDA驱动(推荐版本≥12.0)及配套的NVIDIA Container Toolkit,确保Docker容器能调用GPU资源。
- AMD显卡:需验证是否支持ROCm框架,并通过替换
rocblas.dll
等文件启用GPU加速(如替换Ollama安装目录下的库文件)。 - 国产GPU(如摩尔线程MTTS系列):需结合自研推理引擎,如摩尔线程通过优化算子和内存管理提升DeepSeek-R1模型的推理效率。
2. Docker容器化部署
对于需要隔离环境的场景ÿ