这是一篇通过神经网络CNN来计算图像间自相似的文章;
3.2:
传统方法计算LSS无法得到语义相似性;
我们的方法:


该方法采用弱监督,满足A->B,B->A一致性的视为正样本,其它视为负样本

本文探讨了传统方法在计算图像局部自相似性(LSS)时存在的问题,即无法捕获语义相似性。为解决这一问题,作者提出了一种基于弱监督学习的方法。该方法利用A->B和B->A的一致性作为正样本,其余视为负样本,以此训练神经网络CNN来增强图像间的语义理解。这种方法有望在图像分析和比较中提供更精确的相似性度量。
这是一篇通过神经网络CNN来计算图像间自相似的文章;
3.2:
传统方法计算LSS无法得到语义相似性;
我们的方法:


该方法采用弱监督,满足A->B,B->A一致性的视为正样本,其它视为负样本


被折叠的 条评论
为什么被折叠?
>