梦的漂流瓶
码龄9年
关注
提问 私信
  • 博客:39,779
    39,779
    总访问量
  • 20
    原创
  • 1,413,411
    排名
  • 16
    粉丝
  • 0
    铁粉

个人简介:人工智能,计算机视觉,测绘遥感

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2015-10-31
博客简介:

梦的漂流瓶的博客

博客描述:
自学笔记,欢迎有志之士一起讨论
查看详细资料
个人成就
  • 获得18次点赞
  • 内容获得5次评论
  • 获得71次收藏
创作历程
  • 1篇
    2019年
  • 24篇
    2018年
成就勋章
TA的专栏
  • tensorflow学习
    16篇
  • 密集匹配文章阅读笔记
    3篇
  • Java学习
    1篇
  • Python基础学习
    4篇
  • C++
    1篇
  • PAT
    1篇
兴趣领域 设置
  • 人工智能
    opencvtensorflowscikit-learn聚类分类回归
创作活动更多

开源数据库 KWDB 社区征文大赛,赢取千元创作基金!

提交参赛作品,有机会冲刺至高2000元的创作基金,快来参与吧!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

PAT---基础练习题:A+B和C (15)

给定区间[-2的31次方, 2的31次方]内的3个整数A、B和C,请判断A+B是否大于C。输入描述:输入第1行给出正整数T(<=10),是测试用例的个数。随后给出T组测试用例,每组占一行,顺序给出A、B和C。整数间以空格分隔。输出描述:对每组测试用例,在一行中输出“Case #X: true”如果A+B>C,否则输出“Case #X: false”,其中X是测试用例的编...
原创
发布博客 2019.01.13 ·
319 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

实验记录20181119

今天发现无论是roaddetection,还是Dispnet的损失都难以下降,我不太清楚为什么。现在做了几个改变,首先,对于roaddetection,把多个size的卷积核从原来的直接相加变成堆叠在一起,加上了BN,不过加上BN以后计算机带不动。对于DispNet的改动主要是可以每10000步显示一个结果出来,还有就是加上了指数平滑函数。希望效果还不错。看上去好像并没有什么用。不过对...
原创
发布博客 2018.11.19 ·
446 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

实验记录20181118

1,首先,DispNet去除了corr层,因为我还不确定corr层的原理是否正确,然后继续采用左右影像cancat在一起,然后现在采用FlyingThings3d的数据集,来看看效果如何?2,我觉得road detection的任务还是不能用分类的方法,分类的方法还是产生单个单个的结果,很容易产生不连续的道路预测结果。 3,在参考了几个很重要的文章之后,自己模仿着写出了新的一个网络,最...
原创
发布博客 2018.11.18 ·
279 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

Tensorflow学习入门之---------批量处理数据

    最近开始使用tensorflow自己搭建网络的框架,遇到的第一个问题就是怎么样批量的将文件中的训练图片读进来,并且可以每次抓取一部分图像数据来进行训练。经过了几天的学习,终于在最后完成了批量图片读入的实验。这次学习主要参考的博客文章是这一系列的。tensorflow入门之猫狗大战先上整体的代码:# -*- coding: utf-8 -*-import osimport nu...
原创
发布博客 2018.11.05 ·
928 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

python基础学习之-----------推荐一款超方便的python 图片IO脚本

前几天使用Scene Flow这个数据集做密集匹配,但是它的Ground Truth图片格式是pfm,在网上找了很多都没有非常好的pfm读写方法,最后发现了一个由Scene Flow数据集的团队做出来的一个IO脚本,试了一下,非常好用。#!/usr/bin/env python3.4import osimport reimport numpy as npimport uuidfr...
原创
发布博客 2018.10.15 ·
820 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

实验记录20181013

1,好多天没有记录了,这几天别的事情太忙了。2,我发现之前无缘无故就不训练的原因可能是因为训练数据原始影像和标签影像对应不上。3、发现损失还是没法下降。这个是现在的头号问题。4,可以增加数据增强的部分 ...
原创
发布博客 2018.10.15 ·
181 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

实验记录20181009

1,今天发现利用小批量的矩阵来对原理进行测试是一个不错的思路:代码如下 2,通过实验发现,到计算x37开始就已经出问题了,感觉x37重复了好多的样子 3,一开始认为结果不好使因为测试太多,所以写入文件的数据太多造成的。[[-0.49609199 -1.07098806 -1.09560502 ..., -1.07098806 -1.09560502  -1.07098806]...
原创
发布博客 2018.10.13 ·
204 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

实验记录20181008

1,今天首先对softmax的使用方法进行了实验。import tensorflow as tf"""Created on Mon Oct 8 15:55:59 2018@author: Lenovo"""matrix1=tf.constant( [ [ [1.0,2.0,3.0,7.2], [2.0,...
原创
发布博客 2018.10.08 ·
148 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

实验记录20181007

1,昨天的实验总结。出一点,就是靠Github上开源程序给的loss函数并不可靠,最终还是要落脚在深度的平方根误差2。早上开始的新的实验,有两个收获,第一个,之前的输出值之所以那么小,可能不是网络的原因,也不是有没有图像输入时标准化的原因,很可能是由于定义的costvolume数量太少导致的。第二个收获是,有时候不能够光看loss下降没有来判断网络是否在学习,我们还可以直接看logits是否...
原创
发布博客 2018.10.07 ·
347 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

tensorflow学习之---tf.assign_add,tf.control_dependencies

x = tf.Variable(0.0)#返回一个op,表示给变量x加1的操作x_plus_1 = tf.assign_add(x, 1) #control_dependencies的意义是,在执行with包含的内容(在这里就是 y = x)前#先执行control_dependencies中的内容(在这里就是 x_plus_1)with tf.control_dependencie...
转载
发布博客 2018.10.06 ·
479 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

tensorflow学习之---------------学习率指数衰减法

https://blog.csdn.net/wuguangbin1230/article/details/77658229在Tensorflow中,为解决设定学习率(learning rate)问题,提供了指数衰减法来解决。通过tf.train.exponential_decay函数实现指数衰减学习率。步骤:1.首先使用较大学习率(目的:为快速得到一个比较优的解);           ...
转载
发布博客 2018.10.06 ·
343 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

实验记录20181006

1、将利用tf.slice函数提取cost_volume的部分都去掉。在生成cost_volume的部分取消和Disparity相关的那次迭代。实验结果:运行正常,且不同的cost_volume的权值不再相同,达到预期效果。遗留的还不清楚原因。问题是训练的效果还很差,而且整体的像素值都很小。2、实验:将get_batch函数中的per_picture_standarlization去掉。看...
原创
发布博客 2018.10.06 ·
376 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

matlab版本GPS程序 to Java之----------JuliaDays

本项目将开源的matlab的GPS程序转成java版本。matlab版本非原创,所有著作权归原作者所有。matlab版本:function jDays = JulianDay(utcTime)% jDays = JulianDay(utcTime);% % input: utcTime [mx6] matrix [year,month,day,hours,minutes,secon...
原创
发布博客 2018.10.03 ·
372 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

C++学习之-------线性代数库Eigen

https://blog.csdn.net/j_d_c/article/details/78903393详细参考以上文档
转载
发布博客 2018.10.02 ·
1768 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

密集匹配项目开发填坑日志

2018.9.24   1、 很高兴找到图片没有正确对应上这个问题,但是网络又不收敛了。2、刚刚GPU又爆出来错误,然后将GPU的使用量降低到百分之七十之后恢复正常。3、看了一下,1080那台电脑训练网路还是没有收敛。。。。。4、突然发现,还是github里面的那个项目的代码更靠谱一些,经过改进以后的代码costvolum问题解决了,而且代码更加简洁了2018.9.251、...
原创
发布博客 2018.09.24 ·
594 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

tensorboard踩过的一个坑

今天在使用tensorboard来展示网络形状的时候,由于使用的包含中文字符的路径,居然一直用不了。切记切记!! 未完待续:
原创
发布博客 2018.09.16 ·
895 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Win10环境+ CUDA9.0 +CUDNN7.0+TensorFlow1.7/1.6/1.5配置

一个不错的博客,链接https://blog.csdn.net/xuefengyang666/article/details/79422012
转载
发布博客 2018.09.14 ·
191 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Python学习基础之-----------文件

python打开文件主要采用open这个函数。open函数的文档介绍如下:open(file, mode='r', buffering=-1, encoding=None, errors=None, newline=None, closefd=True, opener=None)open函数的参数介绍如下:  ========= ========================...
原创
发布博客 2018.08.31 ·
149 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Python基础学习之------------集合

python中的集合和字典非常的类似,但是也有他们之间的不同之处。集合也可以采用{ }来创建,但是它和字典有一定的不同的地方,首先,集合不同设置键-值,而只用设置值,其次,集合中的值是唯一的,也就是说集合中不可能存在两个相同的值。具体如下:In [61]: set1={1,2,3,4,5,6}In [62]: set1Out[62]: {1, 2, 3, 4, 5, 6}In ...
原创
发布博客 2018.08.26 ·
159 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Python基础学习之-------dictionary字典

字典是python常用的一种映射类型,这种类型采用键-值的方式对应起来,是一个非常方便灵活的数据结构方法。接下来,我们介绍一下如何利用fromkeys关键字初始化字典。例子如下:dict1={}#创建一个空字典dict1.fromkeys((1,2,3))#设置字典的三个key但不赋予valueOut[4]: {1: None, 2: None, 3: None}#创建后的结果...
原创
发布博客 2018.08.26 ·
271 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多