解题报告:HDU_6169 Senior PanⅡ (记忆化搜索)

题目链接

题意:

给定一个区间 [ L , R ] ,询问区内所有最小因子(除去1)为K的数之和

1<=L,R<=1e11 , 2<=K<=1e11


官方题解:

 思路:

如果数据范围小一点,应该很容易想到dp的做法

数据范围很大,也可以用离散化DP去做,当然直接用map去跑会超时,需要优化

考虑第一维的大小递减很快,小数据的答案用到的频率会远远多于大数据的频率

那么小数据直接用数组保存,大数据直接用搜索

但是复杂度是玄学。。并不会算


代码:

#include<bits/stdc++.h>

#define LL long long
const int N = 32e4 , M = 1e3 , K = 1e3;
const LL mod = 1e9+7;
const LL ni2 = (mod+1)>>1;
using namespace std;

LL dp[M][K] ;
vector<int>pr;
bool Np[N];

void init(){
   for(int i=2;i<N;i++){if(!Np[i])pr.emplace_back(i);
      for(int j=0,k=pr[0]*i;k<N;k=pr[++j]*i){
         Np[k]=1;if(i%pr[j]==0)break;
      }
   }
}

bool check(LL x){
   for(int i=0,ed=sqrt(x+0.5);pr[i]<=ed;i++){
      int& j = pr[i];
      if(x%j==0)return x==j;
   }return true;
}

inline LL dfs(LL n,int k){
   if(k<0)return  n % mod * (1+n%mod)  % mod * ni2 % mod;
   if(pr[k] >=n)return (n>0) ;
   if(n<M&&k<K){
      LL& x = dp[n][k];
      if(x>=0)return x;
      return x =  ( dfs(n,k-1) - 1LL * pr[k] * dfs(n/pr[k],k-1) % mod + mod ) % mod;
   }return ( dfs(n,k-1) - 1LL * pr[k] * dfs(n/pr[k],k-1) ) % mod ;
}

int main()
{
   //freopen("1009.in","r",stdin);
   //freopen("my_1009.out","w",stdout);
   init();
   int T,Cas=0;
   scanf("%d",&T);
   memset(dp,-1,sizeof(dp));
   while(T--){
      LL l,r,k;
      scanf("%lld%lld%lld",&l,&r,&k);
      printf("Case #%d: ",++Cas);
      if(!check(k))printf("0\n");
      else if(r/k<k)printf("%lld\n",k%mod*(k>=l&&k<=r));
      else {
         int p = lower_bound(pr.begin(),pr.end(),k)-pr.begin();
         LL ans = k % mod * ( dfs(r/k,p-1) - dfs((l-1)/k,p-1) )  ;
         ans = (ans%mod+mod)%mod;
         printf("%lld\n",ans);
      }
   }return 0;
}


阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_32570675/article/details/77801821
文章标签: 搜索 dp
个人分类: 动态规划 搜索
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭