Linux Centos+JDK+Tomcat 自学记录,系统为VMware+Centos安装JDKjdk1.8在Centos安装时已存在,可自查版本号java -version查看JDK安装路径which java卸载jdkrm -rf 路径官网下载.tar.gz,移动到/usr/local/src/路径下,切换至该路径并解压cd /usr/local/src/tar -zxvf 压缩包.tar.gz进入/etc/profile配置环境变量vim /etc/profile末列添加后,:wq保存退出export .
Python按位取反实现过程(原码补码) 对二进制数按位取反时,输出结果与”以为的结果“不一致。原因是计算机中数是以补码形式进行存储的。不涉及原码补码理论,仅记录按位取反的实现过程。计算机中原码补码计算规则计算机存储8位,左到右为7-0,最高位为符号位,1为负,0为正;计算机中以补码形式存储正数的原码与补码相同负数的补码为原码按位取反再加+1负数的原为补码-1再按位取反原码补码转换过程中,符号位不变代码举例x=0b1100print("~x = {0:b}".format(~x))y=-0b1001print("~.
二叉树的前序、中序、后序遍历,详细步骤 前序遍历输出顺序:根节点—左子树—右子树 1-2-4-5-3-6中序遍历输出顺序:左子树—根节点—右子树 4-2-5-1-3-6后序遍历输出顺序:左子树—右子树—根节点 4-5-2-6-3-1
批量更改Word中公式大小 已编辑好的公式一个个更改,十分麻烦。本文记录了Word中Mathtype7批量更改大小的操作。如下图word公式,我们可以得知公式尺寸为12。怎么把公式批量更改为10.5(也可以公式中下标等尺寸,本文仅改整体尺寸作参考)。我们双击一个公式,弹出编辑页面,选择–大小–定义–第一行改为10.5.选择–预置–公式预置–保存到文件到安装位置:C:\Program Files (x86)\MathType\Preferences,如果保存时有以下警告,可先存储其它位置,在粘贴到上述位置.
多个独立样本的非参数检验—两两比较--SPSS软件 再次使用SPSS实现Kruskal-Wallis H检验,和Holm-Bonferroni Correction校正,发现忘记怎么操作了,简单记录。声明:所有数据仅为记录SPSS操作的随意设定值,不具有市场参考价值研究,不同人群对某影视作品喜爱程度不同,记录28名研究对象的年龄及打分年龄分为四组,分别为儿童组(children),青年组(youth),中年组(middle),老年组(elderly),分数满分10分1. 打开SPSS,输入数据2. 选项卡:分析-非参数检验-独立样本目标:选.
运动图像国际压缩标准-整理 1. H.261,H.263,H.264压缩标准原理,框图,特点,应用2. MPEG-1,MPEG-2,MPEG-4压缩标准原理,框图,特点,应用3. H.264与MPEG-2两种压缩标准的区别与应用1. H.261,H.263,H.264压缩标准原理,框图,特点,应用1.1 H.2611.1.1 介绍数字电视会议格式。解决不同厂商间的产品兼容性问题,推动电视会议系统的发展。1.1.2 原理在帧间编码时采用了基于 16x16的宏块和整像素精度的运动估计,帧间预测来消除空域冗余,并使用.
不平衡数据分类方法 仅个人学习时,阅读相关资料总结。(可能有部分不准确)文章目录概述定义传统分类器对于不平衡数据的不适用性可应用领域分类方法总框架数据层面样本采样技术随机采样技术人工采样技术经典过采样方法经典欠采样方法其他方法:特征层面Filter过滤式Wrapped封装式Embedded嵌入式算法层面代价敏感学习技术经验加权法模糊加权法自适应加权法决策输出补偿技术基于经验基于关键位置比对基于优化思想集成学习技术经...
Federated Machine Learning: Concept and Applications综述 综述文献:Federated Machine Learning: Concept and Applications 部分知识整理文献介绍了联邦学习的概述与体系架构人工智能面临的挑战:1)数据以孤岛形式存在;2)数据隐私和安全传统数据处理模型:一方收集数据并将数据传输给另一方,另一方负责数据的清理和融合。最后,第三方将获取集成的数据并构建模型供其他方使用。1. 联邦学习概述1)概念:The...
A Survey on Federated Learning Systems- Vision, Hype and Reality for Data Privacy and Protection 综述文献:A Survey on Federated Learning Systems- Vision, Hype and Reality for Data Privacy and Protection 部分知识整理文献总结了联邦学习系统的特点和分类。机器学习算法需要大量数据,单组织数据无法训练高质量模型。由于政策法规(数据保护条例)限制,不同组织的数据隔离,形成数据孤岛(data islan...