pytorch-gpu的安装不需要在服务器安装cuda和cudnn,只需要满足服务器驱动版本大于pytorch-gpu cudatoolkit要求版本即可。
在官网可以查到具体的cuda版本和驱动版本号对应关系:cuda版本和驱动版本号对应

目前最新的pytorch支持cuda11.7,所以根据上面的表格,我们需要将服务器的驱动版本更新到大于等于515.
!!!注意!!!:升级驱动有风险,所以建议先做好镜像或者备份。或者按照低版本CUDA的pytorch。Pytorch安装官网
现在先输入nvidia-smi查看下服务器自身的驱动版本号

可以看到目前服务器的驱动版本为460.106.00,所以需要进行升级。
升级步骤如下:(升级步骤参考博客Ubuntu18.04更新驱动最完美的方法)
输入如下命令(一行一行输入):
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt update
sudo apt install ubuntu-drivers-common
然后输入ubuntu-drivers devices查看可以安装的版本

我们选择安装515版本的,执行如下命令
sudo apt install nvidia-driver-515-server
输入Y继续

等待一段时间后,安装完成。
然后执行sudo reboot重启服务器
等待服务器重启后,执行nvidia-smi

现在驱动已经升级完成了。接下来就是安装pytorch-gpu
首先切换到自己创建的conda环境中,利用conda activate命令切换
然后执行conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.6 -c pytorch -c conda-forge
1652

被折叠的 条评论
为什么被折叠?



