数据挖掘笔记之数据可视化(散点图)

本文详细探讨了数据挖掘中的散点图,介绍了如何使用matplotlib库进行散点图绘制,包括设置点的大小、颜色、形状、颜色映射、透明度等属性。同时,还讨论了如何利用iris.csv数据集,通过分组颜色、分面图形、调整图形比例和共享坐标轴来增强可视化效果。此外,文章还提到了散点图中涉及的拟合线性回归、局部线性回归、逻辑回归等统计分析方法。
摘要由CSDN通过智能技术生成

散点图

matplotlib

scatter(x,y,s,c,marker,cmap,norm,vmin,vmax,alpha,linewidth,edgecolors)

s:散点图点的大小,传入数值型
c:点的颜色
marker:点的形状
cmap:某点colormap值
norm:数据亮度
vmin,vmax:亮度设置
alpha:散点透明度

iris.csv
在这里插入图片描述

import matplotlib.pyplot as plt
plt.scatter(x=iris.Petal_Width,
			y=iris.Petal_Length,
			color='steelblue')
plt.show()

在这里插入图片描述

iris.plot(x='Petal_Width',
		y='Petal_Length',
		kind='scatter',
		title='宽度和长度')
import seaborn as sns
sns.lmplot(x,y,data,hue,col,row,palette,col_wrap,size,aspect
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值