散点图
matplotlib
scatter(x,y,s,c,marker,cmap,norm,vmin,vmax,alpha,linewidth,edgecolors)
s:散点图点的大小,传入数值型
c:点的颜色
marker:点的形状
cmap:某点colormap值
norm:数据亮度
vmin,vmax:亮度设置
alpha:散点透明度
iris.csv

import matplotlib.pyplot as plt
plt.scatter(x=iris.Petal_Width,
y=iris.Petal_Length,
color='steelblue')
plt.show()

iris.plot(x='Petal_Width',
y='Petal_Length',
kind='scatter',
title='宽度和长度')
import seaborn as sns
sns.lmplot(x,y,data,hue,col,row,palette,col_wrap,size,aspect

本文详细探讨了数据挖掘中的散点图,介绍了如何使用matplotlib库进行散点图绘制,包括设置点的大小、颜色、形状、颜色映射、透明度等属性。同时,还讨论了如何利用iris.csv数据集,通过分组颜色、分面图形、调整图形比例和共享坐标轴来增强可视化效果。此外,文章还提到了散点图中涉及的拟合线性回归、局部线性回归、逻辑回归等统计分析方法。
最低0.47元/天 解锁文章
3056

被折叠的 条评论
为什么被折叠?



