算法训练day31-贪心算法-理论基础

本文介绍了贪心算法和动态规划在处理数组问题中的策略。对于455.分发饼干问题,通过贪心策略,先对胃口和饼干排序,然后按顺序分配,以最大化满足的孩子数。376.摆动序列中,通过删除单调坡度上的节点找到最长的摆动序列。53.最大子序和问题,使用动态规划,当区间和小于等于0时重置区间,以找到最大子数组和。这些例子展示了局部最优如何导向全局最优解决方案。
摘要由CSDN通过智能技术生成

理论基础

贪心的本质是选择每一阶段的局部最优,从而达到全局最优

贪心算法并没有固定的套路。

455.分发饼干

假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。

对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

示例 1:

  • 输入: g = [1,2,3], s = [1,1]
  • 输出: 1 解释:你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。所以你应该输出1。

思路

可以先对胃口和饼干都从小到大排序。

然后按照顺序优先用小饼干满足最小的胃口,依次尽可能满足所有胃口。

统计数量并返回。

代码

class Solution {
    public int findContentChildren(int[] g, int[] s) {
       // 先对胃口和饼干排序
       Arrays.sort(g);
       Arrays.sort(s);
       // 优先最小的饼干满足最小的胃口
       int start = 0;
       int count = 0;
       for(int i=0;i<s.length&&start<g.length;i++){
          if(s[i]>=g[start]){
              start ++;
              count ++;
          }
       }
       return count;
    }
}

376.摆动序列

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。

例如, [1,7,4,9,2,5] 是一个摆动序列,因为差值 (6,-3,5,-7,3) 是正负交替出现的。相反, [1,4,7,2,5] 和 [1,7,4,5,5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。

给定一个整数序列,返回作为摆动序列的最长子序列的长度。 通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。

示例 1:

  • 输入: [1,7,4,9,2,5]
  • 输出: 6
  • 解释: 整个序列均为摆动序列。

思路

局部最优:删除单调坡度上的节点(不包括单调坡度两端的节点),那么这个坡度就可以有两个局部峰值。

整体最优:整个序列有最多的局部峰值,从而达到最长摆动序列。

于是该问题的求解实际上变成了求峰值的数量。

代码

class Solution {
    public int wiggleMaxLength(int[] nums) {
        if(nums.length<=1){
           return nums.length;
        }
        // 当前一对差值
        int curDiff = 0;
        // 上一对差值
        int preDiff = 0; 
        // 默认最右边有个峰值
        int res = 1;
        for(int i=0;i<nums.length-1;i++){
           // 计算当前差值
           curDiff = nums[i+1] - nums[i];
           // 出现峰值
           if((curDiff>0 && preDiff<=0) || (preDiff>=0 && curDiff<0)){
              res ++;
              preDiff = curDiff;
           }
        }
        return res;   
    }
}

53.最大子序和

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例: 输入: [-2,1,-3,4,-1,2,1,-5,4] 输出: 6 解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

思路

当区间小于等于0时,立即放弃该段区间。重新调整起始位置从该元素的下一个元素开始重新累加区间和。并不断更新区间和的最大值。最终返回最大值。

代码

class Solution {
    public int maxSubArray(int[] nums) {
      if(nums.length==1){
          return nums[0];
      }
      int count = 0;
      int sum = Integer.MIN_VALUE;
      for(int i=0;i<nums.length;i++){
         count+=nums[i];
         // 取区间累计的最大值,重置区间结束位置
         sum = Math.max(sum,count);
         // 当区间和小于等于0时,重置count。相当于重置区间起始位置
         if(count<=0){
             count = 0;
         }
      }
      return sum;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值