理论基础
贪心的本质是选择每一阶段的局部最优,从而达到全局最优。
贪心算法并没有固定的套路。
455.分发饼干
假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。
对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。
示例 1:
- 输入: g = [1,2,3], s = [1,1]
- 输出: 1 解释:你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。所以你应该输出1。
思路
可以先对胃口和饼干都从小到大排序。
然后按照顺序优先用小饼干满足最小的胃口,依次尽可能满足所有胃口。
统计数量并返回。
代码
class Solution {
public int findContentChildren(int[] g, int[] s) {
// 先对胃口和饼干排序
Arrays.sort(g);
Arrays.sort(s);
// 优先最小的饼干满足最小的胃口
int start = 0;
int count = 0;
for(int i=0;i<s.length&&start<g.length;i++){
if(s[i]>=g[start]){
start ++;
count ++;
}
}
return count;
}
}
376.摆动序列
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。
例如, [1,7,4,9,2,5] 是一个摆动序列,因为差值 (6,-3,5,-7,3) 是正负交替出现的。相反, [1,4,7,2,5] 和 [1,7,4,5,5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
给定一个整数序列,返回作为摆动序列的最长子序列的长度。 通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。
示例 1:
- 输入: [1,7,4,9,2,5]
- 输出: 6
- 解释: 整个序列均为摆动序列。
思路
局部最优:删除单调坡度上的节点(不包括单调坡度两端的节点),那么这个坡度就可以有两个局部峰值。
整体最优:整个序列有最多的局部峰值,从而达到最长摆动序列。
于是该问题的求解实际上变成了求峰值的数量。
代码
class Solution {
public int wiggleMaxLength(int[] nums) {
if(nums.length<=1){
return nums.length;
}
// 当前一对差值
int curDiff = 0;
// 上一对差值
int preDiff = 0;
// 默认最右边有个峰值
int res = 1;
for(int i=0;i<nums.length-1;i++){
// 计算当前差值
curDiff = nums[i+1] - nums[i];
// 出现峰值
if((curDiff>0 && preDiff<=0) || (preDiff>=0 && curDiff<0)){
res ++;
preDiff = curDiff;
}
}
return res;
}
}
53.最大子序和
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例: 输入: [-2,1,-3,4,-1,2,1,-5,4] 输出: 6 解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
思路
当区间小于等于0时,立即放弃该段区间。重新调整起始位置从该元素的下一个元素开始重新累加区间和。并不断更新区间和的最大值。最终返回最大值。
代码
class Solution {
public int maxSubArray(int[] nums) {
if(nums.length==1){
return nums[0];
}
int count = 0;
int sum = Integer.MIN_VALUE;
for(int i=0;i<nums.length;i++){
count+=nums[i];
// 取区间累计的最大值,重置区间结束位置
sum = Math.max(sum,count);
// 当区间和小于等于0时,重置count。相当于重置区间起始位置
if(count<=0){
count = 0;
}
}
return sum;
}
}