yolov5模型转TensorRT踩坑记录

按照 https://codechina.csdn.net/mirrors/enazoe/yolo-tensorrt?utm_source=csdn_github_accelerator 转换遇到的问题记录。

问题1

找不到tensorRT,报错找不到 NvInfer.h
解决
如果tensorRT为下载解压安装的,需要修改CMakeLists.txt:

# tensorrt
include_directories(/home/jiang/TensorRT-7.0.0.11/include)
link_directories(/home/jiang/TensorRT-7.0.0.11/lib)

问题2

报错:

/home/jiang/TensorRT-7.0.0.11/include/NvInfer.h:3290:22: note: declared here
 class TRT_DEPRECATED IPluginLayer : public ILayer
                      ^~~~~~~~~~~~
[100%
Yolov5是一个目标检测算法,通常用于物体检测任务。关于将Yolov5的训练得到的pt模型换为onnx模型的过程,可以参考以下步骤: 1. 首先,确保你已经安装了相关的Python库。在使用Yolov5时,我们需要安装onnx和torch库。 2. 然后,使用Yolov5提供的export.py文件来导出onnx模型。你可以通过指定参数选择待换的权重文件和导出格式。生成的.onnx模型文件将保存在与原权重文件相同的目录下。 3. 在导出onnx模型之前,确保你已经训练好了Yolov5模型,并且获取到了.pt格式的权重文件。 4. 执行导出命令时,可以使用以下指令: ``` python export.py --weights <path-to-weights-file> --img <input-image-size> --batch <batch-size> --include onnx ``` 其中,<path-to-weights-file>是指训练得到的.pt格式的权重文件的路径,<input-image-size>是输入图像的尺寸,<batch-size>是批处理大小。 5. 执行完命令后,导出的.onnx模型文件将保存在与原权重文件相同的目录下。你可以使用这个.onnx文件进行后续的模型部署和应用。 综上所述,通过以上步骤,你可以将Yolov5的训练得到的pt模型换为onnx模型,用于物体检测任务的部署和应用。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [yolov5(v7.0版本)部署为onnx,openvino,TensorRT模型并运行,分享(202303版,包含TensorRT安装)](https://blog.csdn.net/qq_42160143/article/details/129837613)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值