使用Tensorflow计算余弦距离

余弦相似度,又称为余弦相似性,是通过计算两个向量的夹角余弦值来评估他们的相似度,在计算机视觉中,余弦距离一般用于度量两个特征向量之间的相似度,其计算公式如下:

当两个特征向量的方向在特征空间中相同,其夹角为0,余弦值为1,此时两个特征向量完全相似。故,余弦距离越大,两特征向量越相似,范围在[-1,1]。

在tensorflow中如何计算两个特征向量集合之间两两点之间的余弦距离呢?

假设,两特征向量集合X1(k,n),X2(m,n),计算代码如下:

import tensorflow as tf
def get_cos_distance(X1, X2):
    # calculate cos distance between two sets
    # more similar more big
    (k,n) = X1.shape
    (m,n) = X2.shape
    # 求模
    X1_norm = tf.sqrt(tf.reduce_sum(tf.square(X1), axis=1))
    X2_norm = tf.sqrt(tf.reduce_sum(tf.square(X2), axis=1))
    # 内积
    X1_X2 = tf.matmul(X1, tf.transpose(X2))
    X1_X2_norm = tf.matmul(tf.reshape(X1_norm,[k,1]),tf.reshape(X2_norm,[1,m]))
    # 计算余弦距离
    cos = X1_X2/X1_X2_norm
    return cos

参考资源链接:[中文问答系统:Python知识库应用与相似度计算](https://wenku.csdn.net/doc/2o5z9utbdv?utm_source=wenku_answer2doc_content) 构建一个基于Python的中文问答系统,其中涉及到余弦距离作为相似度计算的关键步骤,可以按照以下流程进行: 1. 文本预处理:首先,需要对输入的问题和背景知识进行预处理,包括但不限于分词、去停用词、词性标注等操作。例如,可以使用jieba进行中文分词,nltk或spaCy处理词性标注。 2. 知识库构建与检索:构建一个知识库,其中包含大量预定义的问题和答案对。使用TF-IDF或BM25算法对输入问题与知识库中的问题进行相似度计算,并检索出最相关的知识条目。 3. 问题组合:将检索到的知识条目与输入问题组合,形成一个更大的问题上下文,以便于进行更准确的相似度计算。 4. 生成答案组合:为了后续的相似度计算,生成正确答案的组合以及一定数量的错误答案组合。 5. 计算相似度:利用余弦相似度公式,计算大问题与每个答案组合之间的相似度。余弦相似度计算需要将文本转换为向量表示,常用的方法包括词袋模型、TF-IDF向量等。 6. 损失函数设计与优化:设计损失函数来优化问答系统模型。在本例中,可以采用结构化感知器(structured perceptron)作为损失函数,确保模型能够区分正确答案和错误答案。损失函数的目标是最小化正确答案和错误答案之间的相似度差异。 在Python中,可以使用Scikit-learn库来实现余弦相似度计算使用NumPy库处理向量运算,以及使用Keras或TensorFlow框架构建并训练深度学习模型。 示例代码如下: # 示例代码省略,包括文本预处理、检索、相似度计算和训练模型等操作步骤。 通过上述步骤,你可以构建一个利用余弦距离进行相似度计算的中文问答系统,并通过损失函数进行训练优化。为了获得更深入的理解和实践能力,建议查阅《中文问答系统:Python知识库应用与相似度计算》一书,它提供了丰富的知识库构建、检索技术和相似度计算的实例,以及如何构建和优化问答系统的全面信息。 参考资源链接:[中文问答系统:Python知识库应用与相似度计算](https://wenku.csdn.net/doc/2o5z9utbdv?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>