数据结构编程实践20讲(Python版)—15完全图

往期链接

01 数组 02 链表 03 栈 04 队列 05 二叉树 06 二叉搜索树 07 AVL树 08 红黑树 09 B树 10 B+树
11 线段树 12 树状数组 13 图形数据结构 14 邻接矩阵

15 完全图(Complete Graph)

S1 说明

完全图是一个图论中的概念,指的是一个简单无向图,其中每一对不同的顶点都有一条独特的边相连接。完全图通常用 K n K_n Kn表示,其中 n n n是顶点的数量。

特点
  • 顶点数量:完全图 K n K_n Kn n n n个顶点。
  • 边的数量:完全图的边数为 n ( n − 1 ) 2 \frac{n(n-1)}{2} 2n(n1),这是因为每个顶点与其他 n − 1 n−1 n1个顶点相连。
  • 连通性:完全图是连通的,任意两个顶点之间都有一条边。
  • 度数:在完全图 K n K_n K
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AnFany

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值