数据结构编程实践20讲(Python版)—18哈希表

往期链接

01 数组 02 链表 03 栈 04 队列 05 二叉树 06 二叉搜索树 07 AVL树 08 红黑树 09 B树 10 B+树
11 线段树 12 树状数组 13 图形数据结构 14 邻接矩阵 15 完全图 16 有向图 17 散列

18 哈希表(Hash Table)

S1 说明

哈希表(Hash Table)是一种用于存储键值对的数据结构,通过哈希函数将键映射到数组的索引位置,从而实现快速的查找、插入和删除操作。哈希表的基本思想是将数据存储在一个数组中,并使用哈希函数计算每个元素的存储位置。

特征
  • 快速查找:
    哈希表的查找、插入和删除操作的平均时间复杂度为 O ( 1 ) O(1) O(1),在最坏情况下为 O ( n ) O(n) O(n),但通过良好的哈希函数和冲突解决策略,可以保持接近 O ( 1 ) O(1) O(1)的性能。
  • 键唯一性:
    在哈希表中,每个键都是唯一的。若插入相同的键,则会更新其对应的值。
  • 哈希函数:
    哈希函数将键转换为数组索引。一个好的哈希函数应该能够均匀分布键,减少冲突的发生。
  • 冲突解决:
    当不同的键映射到相同的索引时,会发生冲突。常用的冲突解决方法有链式地址法(使用链表存储同一索引的多个元素)和开放地址法(寻找下一个空位)。
  • 动态扩展:
    当哈希表装载因子(存储的元素数量与数组大小的比率)超过某个阈值时,通常会进行扩展,以保持高性能。
解决问题

哈希表可以解决许多实际问题,包括但不限于:

  • 缓存:使用哈希表存储计算结果或频繁访问的数据,实现快速访问。
  • 数据去重:通过哈希表存储已访问的数据,快速判断新数据是否为重复。
  • 频率统计:在字典或集合中存储数据频率,便于快速查找和更新。
  • 索引建立:在数据库中使用哈希表建立索引,提高数据检索速度。
  • 密码存储:在用户认证中,使用哈希表存储用户信息,提高查找效率。

S2 示例

示例 1
class Person:
    def __init__(self, name, age):
        self.name = name
        self.age = age

    def __hash__(self):
        """自定义哈希函数,将名字和年龄结合起来生成哈希值"""
        return hash((self.name, self.age))

    def __eq__(self, other):
        """比较两个对象是否相等"""
        if isinstance(other, Person):
            return self.name == other.name and self.age == other.age
        return False

# 创建一些对象
person1 = Person("敖耳散", 30)
person2 = Person("包而嗣", 25)
person3 = Person("敖耳散", 30)

# 使用哈希值
print(f"Hash of person1: {
     hash(person1)}")
print(f"Hash of person2: {
     hash(person2)}")
print(f"Hash of person3: {
     hash(person3)}")

# 比较对象
print(f"person1 == person3: {
     person1 == person3}")  # 输出: True
print(f"person1 == person2: {
     person1 == person2}")  # 输出: False

# 使用对象作为字典的键
person_dict = {
   person1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AnFany

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值