顶点法线通过法线贴图进行读取的缺点是什么,顶点对应的游戏物体运动了法线贴图需要重新生成吗

法线贴图(Normal Mapping)是一种用于增强表面细节的技术,通过在纹理中存储法线信息来模拟高细节的表面凹凸效果,而无需增加几何复杂度。尽管法线贴图在图形渲染中非常有用,但它也有一些缺点和局限性。

法线贴图的缺点

  1. 依赖于纹理分辨率

    • 法线贴图的细节程度取决于纹理的分辨率。低分辨率的法线贴图可能会导致细节模糊或失真。
  2. 纹理拉伸和失真

    • 在某些情况下,特别是当UV映射不理想时,法线贴图可能会出现拉伸或失真,导致渲染结果不准确。
  3. 不适用于大规模几何变化

    • 法线贴图主要用于模拟小规模的表面细节,对于大规模的几何变化(如大幅度的凹凸或形变),法线贴图无法提供准确的视觉效果。
  4. 需要额外的计算资源

    • 法线贴图需要在片段着色器中进行额外的计算,以将法线从切线空间转换到世界空间或视图空间。这增加了渲染的计算开销。
  5. 光照依赖性

    • 法线贴图的效果依赖于光照条
AI实战-加拿大的工业产品价格指数数据集分析预测实例(含4个源代码+18.20 MB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:4个代码,共38.64 KB;数据大小:1个文件共18.20 MB。 使用到的模块: numpy pandas os sklearn.model_selection.train_test_split tensorflow.keras.models.Sequential tensorflow.keras.layers.Dense sklearn.impute.KNNImputer sklearn.impute.IterativeImputer sklearn.linear_model.LinearRegression matplotlib.pyplot sklearn.datasets.make_blobs sklearn.cluster.DBSCAN sklearn.neighbors.LocalOutlierFactor sklearn.ensemble.IsolationForest sklearn.svm.OneClassSVM sklearn.preprocessing.MinMaxScaler sklearn.preprocessing.StandardScaler sklearn.preprocessing.MaxAbsScaler sklearn.preprocessing.RobustScaler sklearn.preprocessing.PowerTransformer sklearn.preprocessing.QuantileTransformer sklearn.preprocessing.OneHotEncoder sklearn.preprocessing.LabelEncoder category_encoders seaborn sklearn.cluster.KMeans sklearn.metrics.silhouette_score sklearn.decomposition.PCA sklearn.datasets.load_iris scipy.cluster.hierarchy.linkage scipy.cluster.hierarchy.dendrogram sklearn.cluster.AgglomerativeClustering sklearn.mixture.GaussianMixture matplotlib warnings sklearn.metrics.mean_squared_error sklearn.metrics.r2_score plotly.express sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor catboost.CatBoostRegressor sklearn.metrics.mean_absolute_error sklearn.model_selection.RandomizedSearchCV statsmodels.tsa.arima.model.ARIMA
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

你一身傲骨怎能输

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值