定义
决策树算法是一种监督学习算法,主要用于分类问题,但也可以用于回归问题。它的工作原理是通过一系列的问题对数据进行分类,每个问题都会将数据划分为更小的子集,直到达到叶节点,即最终的分类结果。以下是决策树算法的详细解释:
一、基本概念
-
节点(Node):
- 根节点(Root Node):树的起始点,包含全部数据样本。
- 内部节点(Internal Node):代表一个特征属性的测试,根据测试结果将数据分配到子节点。
- 叶节点(Leaf Node):代表一个类别标签,是决策的结果。
-
边(Edge):连接节点之间的线段,表示特征属性的一个可能取值。
-
分支(Branch):从一个节点出发,沿边到达另一个节点的路径。
-
剪枝(Pruning):为了避免过拟合,对决策树进行简化处理的过程。
二、构建决策树的过程
-
特征选择:
- 目标是选取一个最优特征进行分裂,使得各个分裂子集尽可能地“纯”,即尽量让一个分裂子集中待分类项属于同一类别。
- 常用的特征选择方法有信息增益(ID3算法)、增益率(C4.5算法)和基尼指数(CART算法)。
-
决策树生成:
- 递归地将数据集划分成子集,直到满足停止条件(如达到最大深度、节点中样本数量小于阈值等)。
- 每次划分都选择当前最优的特征进行分裂。
-
决策树剪枝:
- 为了解决过拟合问题,可以对生成的决策树进行剪枝处理。
- 剪枝分为预剪枝(在生成过程中提前停止树的生长)和后剪枝(先生成完整树后再进行简化)。
三、常见决策树算法
-
ID3算法:
- 使用信息增益作为特征选择的准则。
- 存在的问题是对取值较多的特征有所偏好。
-
C4.5算法:
- 是ID3算法的改进版,使用增益率代替信息增益。
- 能够处理连续型属性和缺失值问题。
-
CART算法:
- 既可以用于分类也可以用于回归。
- 使用基尼指数作为分裂标准,并且生成的树是二叉树结构。
四、决策树的应用场景
- 信用评级:根据申请人的各种属性来预测其信用状况。
- 医疗诊断:利用病人的症状和检查结果来判断可能的疾病类型。
- 客户流失预测:分析客户的行为数据来预测哪些客户可能会离开。
五、优缺点分析
优点:
- 易于理解和实现。
- 能够处理非线性关系。
- 可以直观地展示决策过程。
缺点:
- 容易过拟合,特别是在数据集较小或特征较多的情况下。
- 对噪声敏感,数据的轻微改动可能导致树结构的显著变化。
- 不稳定,不同的训练集可能得到不同的决策树。
六、优化策略
- 集成学习:通过构建多个决策树并结合它们的预测结果来提高整体性能(如随机森林)。
- 特征工程:对原始特征进行转换或组合,创造出更有区分力的新特征。
- 交叉验证:使用交叉验证技术来评估模型的泛化能力并选择最佳的模型参数。
总之,决策树算法是一种强大且直观的机器学习工具,适用于多种分类和回归任务。然而,在实际应用中需要注意防止过拟合并进行适当的模型调优。
决策树算法的底层运行原理
决策树算法的底层运行原理主要涉及以下几个核心步骤:
一、数据准备
-
收集数据:获取用于训练决策树的数据集,该数据集通常包含多个样本,每个样本有一组特征和一个对应的标签(分类问题的类别或回归问题的数值)。
-
特征选择:在构建决策树的过程中,需要从所有可用特征中挑选出最有助于分类的特征。这一步骤对决策树的性能和准确性有着至关重要的影响。
二、树的构建
-
创建根节点:决策树的起始点是根节点,它包含整个数据集。
-
递归分裂:
- 计算信息增益/增益率/基尼指数:根据所选的特征选择算法(如ID3、C4.5或CART),计算每个特征的分裂价值。
- 选择最佳特征:选取分裂价值最高的特征作为当前节点的分裂标准。
- 分裂节点:根据最佳特征的不同取值,将数据集分割成若干子集,并为每个子集创建一个新的内部节点。这些子集将形成树的分支。
-
终止条件判断:
- 如果某个子集中的所有样本都属于同一类别,则该子集成为叶节点,并被标记为该类别。
- 如果达到预设的最大深度、节点中的样本数量小于预设阈值,或者没有更多特征可用于分裂,则同样将该节点标记为叶节点,并根据该节点样本的多数类别进行标记。
三、剪枝处理
-
预剪枝:在树的构建过程中提前停止树的生长,以防止过拟合。例如,可以设定一个最大深度限制,或者当节点的不纯度降低到某个阈值以下时停止分裂。
-
后剪枝:先构建完整的决策树,然后自底向上地评估是否有子树可以被替换为一个叶节点而不显著降低模型的准确性。这种方法通常能更有效地减少过拟合,但计算成本相对较高。
四、决策与预测
- 新样本分类:对于一个新的未知样本,从根节点开始,根据其特征值沿着决策树逐层向下遍历,直到达到一个叶节点。该叶节点所标记的类别即为该样本的预测类别。
五、底层机制实现细节
-
数据结构:决策树通常使用树形数据结构来表示,其中每个节点包含指向其子节点的指针以及关于分裂特征和分裂条件的信息。
-
算法优化:在实际应用中,为了提高效率,可能会采用各种优化技术,如特征预排序、缓存友好设计以及并行化处理等。
-
内存管理:对于大规模数据集,需要考虑内存的有效利用和管理,例如通过采样或使用分布式计算框架来处理大数据。
六、与机器学习框架的集成
- 在实际应用中,决策树算法通常会被集成到更广泛的机器学习框架中,如Scikit-learn、TensorFlow或PyTorch等。这些框架提供了丰富的工具和接口来简化决策树的构建、训练和评估过程。
综上所述,决策树算法的底层运行原理是通过递归地选择最佳特征进行分裂,并在满足终止条件时形成叶节点,从而构建出一棵能够对新数据进行分类或回归预测的决策树。
决策树算法主要解决哪一类问题
决策树算法主要用于解决分类问题,但也可以用于回归问题。以下是详细解释:
分类问题
定义:
分类是指将数据样本分配到预定义的类别中。每个样本都有一组特征和一个对应的标签,标签表示该样本属于哪个类别。
应用场景:
- 信用评分:根据用户的财务状况、历史记录等信息判断其信用等级(如优秀、良好、一般、较差)。
- 医疗诊断:基于病人的症状、检查结果等信息预测其可能患有的疾病。
- 客户流失预测:分析客户的消费行为、服务使用情况等特征来预测其是否会离开公司。
回归问题
定义:
回归是指预测一个连续的数值结果。与分类不同,回归问题的标签是一个实数而不是离散的类别。
应用场景:
- 房价预测:根据房屋的面积、地理位置、建造年份等特征估算其销售价格。
- 股票价格预测:利用历史股价、市场情绪、宏观经济指标等信息来预测未来的股价走势。
- 能源消耗预测:基于天气条件、时间段、设备使用情况等因素预测能源消耗量。
决策树在两类问题中的通用性
-
构建过程相似:无论是分类还是回归,决策树的构建过程基本相同,都是通过递归地选择最佳特征进行分裂,并在适当的时候停止生长形成叶节点。
-
区别在于叶节点的处理:
- 在分类问题中,叶节点代表一个类别标签,通常采用多数表决法来确定该节点的类别。
- 在回归问题中,叶节点的值是该节点内所有样本目标值的平均值或其他统计量(如中位数)。
注意事项
-
虽然决策树可以同时处理分类和回归任务,但在实际应用中需要根据具体问题的性质选择合适的算法变体和评估指标。
-
对于复杂的非线性关系或高维数据集,可能需要结合其他技术(如集成学习方法)来提高模型的准确性和稳定性。
总之,决策树算法是一种强大且灵活的工具,能够广泛应用于各种分类和回归场景中。
决策树算法设计思路
决策树算法的设计思路主要包括以下几个关键步骤:
一、确定问题和目标
-
明确任务类型:首先要确定是进行分类还是回归。
-
理解数据特征:深入了解数据集中的各个特征及其可能的取值范围。
-
定义目标变量:对于分类问题,明确各个可能的类别;对于回归问题,确定预测的目标数值范围。
二、数据预处理
-
数据清洗:处理缺失值、异常值和重复记录。
-
特征工程:可能需要对原始特征进行转换、编码或创建新的组合特征以提高模型的预测能力。
-
数据分割:通常将数据集划分为训练集、验证集和测试集,以便在不同阶段评估模型性能。
三、选择合适的决策树算法
根据具体需求和数据特性,选择一个或多个适合的决策树算法,如ID3、C4.5、CART等。
四、树的构建过程
-
特征选择:
- 确定用于分裂节点的最佳特征。常用的方法有信息增益(ID3)、增益率(C4.5)和基尼指数(CART)。
-
创建根节点:将整个数据集作为初始节点。
-
递归分裂:
- 根据选定的特征及其取值将数据集分割成子集。
- 对每个子集重复上述过程,直到满足停止条件。
-
终止条件设定:
- 达到预设的最大深度。
- 节点中的样本数量小于预设阈值。
- 所有样本属于同一类别。
- 没有剩余的特征可用于进一步分裂。
五、剪枝策略
-
预剪枝:在构建树的过程中提前停止生长以防止过拟合。
-
后剪枝:先构建完整的树,然后自底向上地移除对模型性能提升不大的子树。
六、模型评估与优化
-
性能度量:使用准确率、精确率、召回率、F1分数等指标评估分类模型的性能;对于回归模型,则可能使用均方误差(MSE)、均方根误差(RMSE)或决定系数(R²)。
-
交叉验证:通过交叉验证技术来更稳健地估计模型的泛化能力。
-
超参数调优:利用网格搜索、随机搜索或贝叶斯优化等方法寻找最优的超参数组合。
七、集成学习应用
- 考虑使用随机森林、梯度提升树等集成学习方法来进一步提升决策树的性能和稳定性。
八、部署与应用
- 将训练好的模型部署到生产环境中,并监控其在实际应用中的表现。
注意事项
-
决策树容易过拟合,特别是在数据量小或特征维度高的情况下。
-
对数据的噪声和异常值敏感,需要进行适当的数据清洗和处理。
-
决策树的可视化有助于理解模型决策过程,便于解释和沟通。
综上所述,设计一个有效的决策树算法需要综合考虑数据特性、任务需求、算法选择以及后续的优化和应用等多个方面。
决策树算法类的具体实现c#语言
以下是一个简单的决策树算法类的C#实现示例。这个示例使用了ID3算法进行特征选择,并且仅用于分类问题。
using System;
using System.Collections.Generic;
using System.Linq;
public class DecisionTree
{
public class TreeNode
{
public string Feature { get; set; }
public Dictionary<string, TreeNode> Children { get; set; }
public string Label { get; set; }
public TreeNode()
{
Children = new Dictionary<string, TreeNode>();
}
}
private TreeNode root;
public void Train(Dictionary<string, string[]> data, string[] labels)
{
root = BuildTree(data, labels);
}
private TreeNode BuildTree(Dictionary<string, string[]> data, string[] labels)
{
var node = new TreeNode();
// Check if all examples belong to the same class
var uniqueLabels = data.Values.Select(example => example.Last()).Distinct().ToList();
if (uniqueLabels.Count == 1)
{
node.Label = uniqueLabels[0];
return node;
}
// Check if no features left to split on
if (labels.Length == 0)
{
node.Label = data.Values.Select(example => example.Last()).GroupBy(label => label).OrderByDescending(g => g.Count()).First().Key;
return node;
}
// Select best feature to split on
var bestFeature = SelectBestFeature(data, labels);
node.Feature = bestFeature;
// Remove the best feature from the labels
var remainingFeatures = labels.Where(f => f != bestFeature).ToArray();
// Split the data based on the best feature
var partitions = PartitionData(data, bestFeature);
// Create child nodes recursively
foreach (var partition in partitions)
{
node.Children.Add(partition.Key, BuildTree(partition.Value, remainingFeatures));
}
return node;
}
private string SelectBestFeature(Dictionary<string, string[]> data, string[] labels)
{
// Implement ID3 feature selection here
// This is a placeholder implementation
return labels.First();
}
private Dictionary<string, Dictionary<string, string[]>> PartitionData(Dictionary<string, string[]> data, string feature)
{
var partitions = new Dictionary<string, Dictionary<string, string[]>>();
foreach (var example in data)
{
var featureValue = example.Value[Array.IndexOf(labels, feature)];
if (!partitions.ContainsKey(featureValue))
{
partitions[featureValue] = new Dictionary<string, string[]>();
}
partitions[featureValue][example.Key] = example.Value;
}
return partitions;
}
public string Predict(Dictionary<string, string> example)
{
var node = root;
while (node.Children.Count > 0)
{
if (example.ContainsKey(node.Feature))
{
node = node.Children[example[node.Feature]];
}
else
{
throw new Exception($"Feature {node.Feature} not found in example");
}
}
return node.Label;
}
}
说明
- TreeNode类:表示决策树的节点,包含特征名称、子节点字典和标签。
- Train方法:用于训练决策树,调用
BuildTree方法构建树。 - BuildTree方法:递归构建决策树,选择最佳特征进行分裂,并创建子节点。
- SelectBestFeature方法:选择最佳特征的占位符实现,实际应用中应实现ID3算法或其他特征选择方法。
- PartitionData方法:根据选定特征将数据分割成不同的分区。
- Predict方法:用于对新数据进行预测,沿着树结构遍历直到找到叶节点。
使用示例
class Program
{
static void Main(string[] args)
{
var data = new Dictionary<string, string[]>
{
{ "1", new string[] { "Sunny", "Hot", "High", "Weak", "No" } },
{ "2", new string[] { "Sunny", "Hot", "High", "Strong", "No" } },
{ "3", new string[] { "Overcast", "Cool", "Normal", "Weak", "Yes" } },
{ "4", new string[] { "Rain", "Mild", "High", "Weak", "Yes" } },
{ "5", new string[] { "Rain", "Cool", "Normal", "Weak", "Yes" } },
{ "6", new string[] { "Rain", "Cool", "Normal", "Strong", "No" } },
{ "7", new string[] { "Overcast", "Hot", "High", "Strong", "Yes" } },
{ "8", new string[] { "Sunny", "Mild", "High", "Weak", "No" } },
{ "9", new string[] { "Sunny", "Cool", "Normal", "Weak", "Yes" } },
{ "10", new string[] { "Rain", "Mild", "Normal", "Weak", "Yes" } },
{ "11", new string[] { "Sunny", "Mild", "Normal", "Strong", "Yes" } },
{ "12", new string[] { "Overcast", "Mild", "High", "Strong", "Yes" } },
{ "13", new string[] { "Overcast", "Hot", "Normal", "Weak", "Yes" } },
{ "14", new string[] { "Rain", "Mild", "High", "Strong", "No" } },
};
var labels = new string[] { "Outlook", "Temperature", "Humidity", "Wind", "PlayTennis" };
var tree = new DecisionTree();
tree.Train(data, labels);
var example = new Dictionary<string, string>
{
{ "Outlook", "Sunny" },
{ "Temperature", "Cool" },
{ "Humidity", "High" },
{ "Wind", "Strong" }
};
var prediction = tree.Predict(example);
Console.WriteLine($"Prediction: {prediction}");
}
}
这个示例是一个简单的决策树实现,实际应用中可能需要更复杂的特征选择方法和更多的优化。希望这个示例能帮助你理解决策树算法的基本结构和实现思路。
继续深入探讨决策树算法的C#实现,我们可以进一步优化和完善上述示例代码。以下是一些可能的改进方向和扩展功能:
1. 特征选择算法的实现
在之前的示例中,SelectBestFeature方法只是一个占位符。为了实现ID3算法或其他特征选择方法,我们需要根据信息增益来选择最佳特征。
private string SelectBestFeature(Dictionary<string, string[]> data, string[] labels)
{
string bestFeature = null;
double maxInfoGain = double.MinValue;
foreach (var label in labels)
{
if (label == labels.Last()) continue; // Skip the target label
double infoGain = CalculateInfoGain(data, label);
if (infoGain > maxInfoGain)
{
maxInfoGain = infoGain;
bestFeature = label;
}
}
return bestFeature;
}
private double CalculateInfoGain(Dictionary<string, string[]> data, string feature)
{
// Implement the calculation of information gain here
// This is a placeholder for the actual implementation
return 0.0;
}
2. 处理缺失值
在实际数据集中,缺失值是一个常见问题。我们需要在算法中添加处理缺失值的逻辑。
private string SelectBestFeature(Dictionary<string, string[]> data, string[] labels)
{
// Existing code...
foreach (var label in labels)
{
if (label == labels.Last()) continue; // Skip the target label
double infoGain = CalculateInfoGainWithMissingValues(data, label);
if (infoGain > maxInfoGain)
{
maxInfoGain = infoGain;
bestFeature = label;
}
}
return bestFeature;
}
private double CalculateInfoGainWithMissingValues(Dictionary<string, string[]> data, string feature)
{
// Implement the calculation of information gain considering missing values
// This is a placeholder for the actual implementation
return 0.0;
}
3. 剪枝策略
为了防止过拟合,我们可以实现预剪枝或后剪枝策略。
private TreeNode BuildTree(Dictionary<string, string[]> data, string[] labels, int maxDepth, int minSamplesSplit)
{
var node = new TreeNode();
// Check if all examples belong to the same class
// Existing code...
// Check if no features left to split on
// Existing code...
// Check if reached maximum depth or minimum samples to split
if (maxDepth == 0 || data.Count < minSamplesSplit)
{
node.Label = data.Values.Select(example => example.Last()).GroupBy(label => label).OrderByDescending(g => g.Count()).First().Key;
return node;
}
// Select best feature to split on
// Existing code...
// Remove the best feature from the labels
// Existing code...
// Split the data based on the best feature
// Existing code...
// Create child nodes recursively
// Existing code...
return node;
}
4. 集成学习
我们可以使用随机森林等集成学习方法来提高决策树的性能。
public class RandomForest
{
private List<DecisionTree> trees;
public RandomForest(int numTrees)
{
trees = new List<DecisionTree>();
for (int i = 0; i < numTrees; i++)
{
trees.Add(new DecisionTree());
}
}
public void Train(Dictionary<string, string[]> data, string[] labels)
{
foreach (var tree in trees)
{
var bootstrapSample = BootstrapSample(data, labels);
tree.Train(bootstrapSample.Item1, bootstrapSample.Item2);
}
}
private Tuple<Dictionary<string, string[]>, string[]> BootstrapSample(Dictionary<string, string[]> data, string[] labels)
{
// Implement bootstrap sampling here
// This is a placeholder for the actual implementation
return Tuple.Create(new Dictionary<string, string[]>(), new string[0]);
}
public string Predict(Dictionary<string, string> example)
{
var votes = new Dictionary<string, int>();
foreach (var tree in trees)
{
var prediction = tree.Predict(example);
if (!votes.ContainsKey(prediction))
{
votes[prediction] = 0;
}
votes[prediction]++;
}
return votes.OrderByDescending(kvp => kvp.Value).First().Key;
}
}
5. 性能优化
对于大规模数据集,我们可以考虑使用并行计算来加速特征选择和树的构建过程。
private string SelectBestFeatureParallel(Dictionary<string, string[]> data, string[] labels)
{
return labels.AsParallel().Where(label => label != labels.Last())
.Select(label => new { Feature = label, InfoGain = CalculateInfoGain(data, label) })
.OrderByDescending(x => x.InfoGain).First().Feature;
}
通过这些改进和扩展,我们可以使决策树算法更加健壮、高效,并适应更广泛的应用场景。希望这些建议能帮助你进一步优化和完善决策树算法的C#实现。
决策树算法的优势
决策树算法具有许多优势,使其在各种应用场景中成为受欢迎的机器学习方法。以下是决策树算法的一些主要优势:
1. 易于理解和解释
- 直观性:决策树的结构类似于流程图,可以直观地展示决策过程。
- 可解释性:每个节点代表一个特征测试,每个分支代表一个测试结果,最终的叶节点给出决策结果。
2. 几乎不需要数据预处理
- 处理缺失值:决策树算法通常能够自然处理缺失值,不需要额外的填充或插补步骤。
- 处理分类特征:可以直接处理分类特征,不需要将其转换为数值形式。
- 无需标准化:不需要对数据进行标准化或归一化处理。
3. 能够处理非线性关系
- 灵活性:决策树能够捕捉特征之间的复杂和非线性关系,不需要假设数据的特定分布。
4. 适用于多输出问题
- 多任务学习:可以同时处理多个输出变量,适用于多标签分类或多任务回归问题。
5. 自愈数据集的特性
- 鲁棒性:对异常值不太敏感,因为决策是基于多个特征的联合条件,而不是单个特征的值。
- 处理不平衡数据:可以通过调整类权重或在树构建过程中采用特定的采样策略来处理类别不平衡问题。
6. 高效的训练和预测
- 训练速度快:尤其是在特征数量较少且树深度不深的情况下,决策树的训练速度相对较快。
- 预测效率高:预测时的计算复杂度较低,适合实时应用。
7. 可以进行特征选择
- 内置特征重要性评估:在构建树的过程中,决策树算法会自然地进行特征选择,可以通过特征重要性评分来了解哪些特征对模型预测最有影响。
8. 易于集成
- 集成学习基础:决策树是许多集成学习方法(如随机森林和梯度提升树)的基础组件,通过集成多个决策树可以显著提高模型的性能和稳定性。
9. 可视化能力强
- 图形化展示:决策树的结构可以很容易地用图形化方式展示,便于分析和交流。
10. 适用于各种规模的数据集
- 小数据集:在小数据集上表现良好,能够有效地提取有用信息。
- 大数据集:通过适当的剪枝和并行化处理,也可以应用于大规模数据集。
注意事项
尽管决策树具有上述诸多优势,但也存在一些局限性,如容易过拟合、对噪声敏感以及在某些情况下可能产生不稳定的模型。因此,在实际应用中,通常需要结合其他技术和策略(如剪枝、集成学习等)来充分发挥其优势并克服其不足。
总之,决策树算法以其直观性、灵活性和高效性,在许多领域中得到了广泛的应用和认可。
决策树算法的时间复杂度分析
决策树算法的时间复杂度分析涉及多个因素,包括树的深度、特征数量、样本数量以及具体的实现方式。以下是对决策树算法时间复杂度的详细分析:
1. 最坏情况时间复杂度
在最坏情况下,决策树算法的时间复杂度可以达到指数级。这种情况通常发生在以下情形:
- 树深度达到最大:如果树不断分裂直到每个叶节点只包含一个样本,那么树的深度将达到 (O(n)),其中 (n) 是样本数量。
- 特征选择效率低:如果每次选择的特征都不能有效地将数据集分割,导致树的分裂非常缓慢且不充分。
在这种最坏情况下,决策树的时间复杂度可以表示为:
[ O(n^d) ]
其中:
- ( n ) 是样本数量。
- ( d ) 是树的最大深度。
2. 平均情况时间复杂度
在平均情况下,决策树算法的时间复杂度通常比最坏情况要好得多。平均情况下的时间复杂度取决于以下几个因素:
- 特征数量 ( k ):每次分裂时需要评估的特征数量。
- 样本数量 ( n ):数据集中的样本总数。
- 树的深度 ( d ):实际构建的树的深度。
对于基于信息增益或基尼不纯度的决策树(如ID3、C4.5、CART),平均时间复杂度可以近似为:
[ O(n \cdot k \cdot d) ]
3. 具体实现方式的优化
不同的决策树实现方式会对时间复杂度产生影响:
-
预排序:在每次分裂前对特征进行预排序可以加速最佳分裂点的查找。这种方法的时间复杂度为 (O(n \log n + k \cdot d \cdot n)),其中 (n \log n) 是预排序的成本。
-
随机化:随机选择特征子集进行评估(如在随机森林中)可以减少每次分裂的计算量,从而提高效率。
4. 剪枝的影响
剪枝策略也会影响决策树的构建时间:
-
预剪枝:通过在达到一定深度或满足其他停止条件时提前终止树的生长,可以减少不必要的分裂操作,从而降低时间复杂度。
-
后剪枝:先构建完整的树然后进行剪枝通常会增加总的计算时间,因为它涉及到额外的验证步骤来确定哪些分支可以被安全移除。
5. 并行化和分布式计算
利用并行计算资源可以显著加快决策树的训练过程:
- 特征并行:同时评估多个特征的分裂效果。
- 样本并行:将数据集分割成多个子集并在不同处理器上独立构建子树。
总结
综上所述,决策树算法的时间复杂度在不同的条件和实现方式下会有较大差异。在实际应用中,通过合理选择特征、控制树的深度、采用有效的剪枝策略以及利用并行计算等技术,可以有效降低决策树的训练和预测时间。
总之,虽然决策树在最坏情况下可能面临较高的时间复杂度,但在实际应用中,通过适当的优化措施,其性能通常是可接受的并且具有很高的实用性。
2503

被折叠的 条评论
为什么被折叠?



