如何降低Unity项目的构建时长

导语

很多项目仍然被unity构建时间太长的问题困扰着,为了解决这个问题,尝试一些方案。

背景

能够更快拿新包,更快转入测试流程,快速封版本是每个项目都非常关心的问题。一个较好的构建流程和时间至关重要,不仅节约各个部门同事的时间,也可以避免无用的等待和加班。

方案

并行构建
抓出耗时最长的节点(一般是unity构建),分析和拆解;
检查多余的操作和任务;
检查代码的性能问题;

并行构建

我们首先要做的就是把所有非必要和非及时性的任务从主构建流程中移除掉,并行或异步处理。
两个工程分别执行Res和App的构建结束后再组合成包

资源生成打包列表

收集资源生成打包列表的时候尽量不要用GetDependences和一些AssetDatabase.Load等耗时函数
据我了解,很多项目为了省事,会去使用这些接口来收集打包资源列表,但这些相当耗时,尽量从设计上避免这些行为,通过良好的资源管理和打包规则来避免

Resources目录下不要放太多资源

不确定是否有老项目还在Resources目录下放很多资源,这部分每次都会重新构建成bundle,浪费相当多的时间

发布资源和加壳放到子流水线

不要让发布资源和加壳APK阻碍主流程

AI实战-加拿大的工业产品价格指数数据集分析预测实例(含4个源代码+18.20 MB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:4个代码,共38.64 KB;数据大小:1个文件共18.20 MB。 使用到的模块: numpy pandas os sklearn.model_selection.train_test_split tensorflow.keras.models.Sequential tensorflow.keras.layers.Dense sklearn.impute.KNNImputer sklearn.impute.IterativeImputer sklearn.linear_model.LinearRegression matplotlib.pyplot sklearn.datasets.make_blobs sklearn.cluster.DBSCAN sklearn.neighbors.LocalOutlierFactor sklearn.ensemble.IsolationForest sklearn.svm.OneClassSVM sklearn.preprocessing.MinMaxScaler sklearn.preprocessing.StandardScaler sklearn.preprocessing.MaxAbsScaler sklearn.preprocessing.RobustScaler sklearn.preprocessing.PowerTransformer sklearn.preprocessing.QuantileTransformer sklearn.preprocessing.OneHotEncoder sklearn.preprocessing.LabelEncoder category_encoders seaborn sklearn.cluster.KMeans sklearn.metrics.silhouette_score sklearn.decomposition.PCA sklearn.datasets.load_iris scipy.cluster.hierarchy.linkage scipy.cluster.hierarchy.dendrogram sklearn.cluster.AgglomerativeClustering sklearn.mixture.GaussianMixture matplotlib warnings sklearn.metrics.mean_squared_error sklearn.metrics.r2_score plotly.express sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor catboost.CatBoostRegressor sklearn.metrics.mean_absolute_error sklearn.model_selection.RandomizedSearchCV statsmodels.tsa.arima.model.ARIMA
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

你一身傲骨怎能输

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值