qq_33128705
码龄9年
关注
提问 私信
  • 博客:6,197
    6,197
    总访问量
  • 9
    原创
  • 1,335,222
    排名
  • 1
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2015-11-25
博客简介:

qq_33128705的博客

查看详细资料
个人成就
  • 获得0次点赞
  • 内容获得0次评论
  • 获得6次收藏
创作历程
  • 7篇
    2021年
  • 2篇
    2020年
成就勋章
兴趣领域 设置
  • 大数据
    flink
  • 人工智能
    opencv语音识别计算机视觉机器学习深度学习神经网络自然语言处理tensorflowpytorch图像处理nlp数据分析
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

DW推荐系统 | Task01 熟悉新闻推荐系统基本流程

Task01 熟悉新闻推荐系统基本流程这两天因为事情较多,只听了直播课程了解了一下基本流程+跑通程序。1.流程图仅了解了大概,说实话有些流程还不太了解。(填坑,之后再补…2.安装流程这一块非常感谢峰哥!基本完全按照他的流程来的,没踩什么坑!撒花!开心!2.1 使用软件版本操作系统:Windows10MySQL:8.0.23Redis:5.0.14Mongodb:5.0.5Anaconda Python 4.8.3Node.js:12.19.0前端IDE:VSCode 1.63.0
原创
发布博客 2021.12.14 ·
2240 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Datawhale-数据分析-泰坦尼克-第三单元-模型建立和评估

第三章 模型搭建和评估–建模经过前面的两章的知识点的学习,我可以对数数据的本身进行处理,比如数据本身的增删查补,还可以做必要的清洗工作。那么下面我们就要开始使用我们前面处理好的数据了。这一章我们要做的就是使用数据,我们做数据分析的目的也就是,运用我们的数据以及结合我的业务来得到某些我们需要知道的结果。那么分析的第一步就是建模,搭建一个预测模型或者其他模型;我们从这个模型的到结果之后,我们要分析我的模型是不是足够的可靠,那我就需要评估这个模型。今天我们学习建模,下一节我们学习评估。我们拥有的泰坦尼克号的数
原创
发布博客 2021.06.23 ·
297 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Datawhale-数据分析-泰坦尼克-第二单元4节-数据可视化

**复习:**回顾学习完第一章,我们对泰坦尼克号数据有了基本的了解,也学到了一些基本的统计方法,第二章中我们学习了数据的清理和重构,使得数据更加的易于理解;今天我们要学习的是第二章第三节:数据可视化,主要给大家介绍一下Python数据可视化库Matplotlib,在本章学习中,你也许会觉得数据很有趣。在打比赛的过程中,数据可视化可以让我们更好的看到每一个关键步骤的结果如何,可以用来优化方案,是一个很有用的技巧。2 第二章:数据可视化开始之前,导入numpy、pandas以及matplotlib包和数据
原创
发布博客 2021.06.21 ·
571 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

Datawhale-数据分析-泰坦尼克-第二单元2.3节

复习:在前面我们已经学习了Pandas基础,第二章我们开始进入数据分析的业务部分,在第二章第一节的内容中,我们学习了数据的清洗,这一部分十分重要,只有数据变得相对干净,我们之后对数据的分析才可以更有力。而这一节,我们要做的是数据重构,数据重构依旧属于数据理解(准备)的范围。开始之前,导入numpy、pandas包和数据# 导入基本库import numpy as npimport pandas as pd# 载入data文件中的:train-left-up.csvdf = pd.read_cs
原创
发布博客 2021.06.20 ·
153 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Datawhale-数据分析-泰坦尼克-第二单元第一节

【回顾&引言】前面一章的内容大家可以感觉到我们主要是对基础知识做一个梳理,让大家了解数据分析的一些操作,主要做了数据的各个角度的观察。那么在这里,我们主要是做数据分析的流程性学习,主要是包括了数据清洗以及数据的特征处理,数据重构以及数据可视化。这些内容是为数据分析最后的建模和模型评价做一个铺垫。开始之前,导入numpy、pandas包和数据#加载所需的库import numpy as npimport pandas as pd#加载数据train.csvtrain_data = pd.
原创
发布博客 2021.06.17 ·
113 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Datawhale-数据分析-泰坦尼克-第一单元

1 第一章:数据载入及初步观察1.1 载入数据数据集下载 https://www.kaggle.com/c/titanic/overview1.1.1 任务一:导入numpy和pandas#写入代码import numpy as npimport pandas as pdimport os【提示】如果加载失败,学会如何在你的python环境下安装numpy和pandas这两个库1.1.2 任务二:载入数据(1) 使用相对路径载入数据(2) 使用绝对路径载入数据#写入代码test
原创
发布博客 2021.06.16 ·
2051 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Datawhale-数据分析-泰坦尼克-第一单元

复习:在前面我们已经学习了Pandas基础,知道利用Pandas读取csv数据的增删查改,今天我们要学习的就是探索性数据分析,主要介绍如何利用Pandas进行排序、算术计算以及计算描述函数describe()的使用。1 第一章:探索性数据分析开始之前,导入numpy、pandas包和数据#加载所需的库import numpy as npimport pandas as pd#载入之前保存的train_chinese.csv数据,关于泰坦尼克号的任务,我们就使用这个数据train_data =
原创
发布博客 2021.06.16 ·
2 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

论文阅读《Modeling Semantic Compositionality with Sememe Knowledge》

论文阅读《Modeling Semantic Compositionality with Sememe Knowledge》——基于义素知识的语义组合性建模摘要:Semantic Compositionality(SC)是指一个复杂的语言单元可以由其组成成分的意思构成。大部分研究多采用复杂的组合函数对SC建模,没有考虑外部知识。本文通过一个验证性实验验证了人类语言最小语义单位义原(sememes)在SC建模中的有效性。在此基础上,我们首次尝试将义原知识整合到SC模型中,并将义原整合模型应用到SC的典型任
原创
发布博客 2021.03.07 ·
448 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

第二次打卡

过拟合欠拟合欠拟合:一类是模型无法得到较低的训练误差,我们将这一现象称作欠拟合(underfitting);过拟合:另一类是模型的训练误差远小于它在测试数据集上的误差,我们称该现象为过拟合(overfitting)。在实践中,我们要尽可能同时应对欠拟合和过拟合。虽然有很多因素可能导致这两种拟合问题,在这里我们重点讨论两个因素:模型复杂度和训练数据集大小。模型复杂度对于欠拟合的问题可...
原创
发布博客 2020.02.18 ·
138 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Task01:线性回归;Softmax与分类模型、多层感知机

1.线性回归线性回归输出是⼀个连续值,因此适⽤于回归问题。回归问题在实际中很常见,如预测房屋价格、气温、销售额等连续值的问题。与回归问题不同,分类问题中模型的最终输出是⼀个离散值。我们所说的图像分类、垃圾邮件识别、疾病检测等输出为离散值的问题都属于分类问题的范畴。softmax回归则适用于分类问题。在学习线性回归中,遇见的主要问题如下:读取数据集其中yield的用法def data_it...
原创
发布博客 2020.02.14 ·
187 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏