Chunkr: 在线PDF文档解析与OCR工具 这部分属于(pdf-document-layout-analysis)的内容,可以移步查看具体模型的介绍和训练过程。1.1 机器学习模型基于LIGHTGBM算法,并且只需要使用CPU资源,因此对硬件要求不高,速度快,但是只能处理文字类型的PDF。1.2 VGT模型能处理图片PDF,同时把版面内容识别为11种类型如果对表格、图片、手写内容的识别精度有要求,则需要使用该模型。
一文梳理RAG(检索增强生成)的现状与挑战 大模型相较于过去的语言模型具备更加强大的能力,但在实际应用中,例如在准确性、知识更新速度和答案透明度方面,仍存在不少问题,比如典型的幻觉现象。因此,检索增强生成 (Retrieval-Augmented Generation, RAG) 被当作于大模型应用开发的一种新范式。RAG是指在利用大语言模型回答问题之前,先从外部知识库检索相关信息,然后再让模型根据这些信息进行总结归纳,这样便能确保模型不会胡说八道,并且回答的内容是有所依据的。
大模型RAG应用开发之PDF解析工具对比 非扫描件无OCR要求直接使用即可,能正确保留双列布局的文本顺序,同时能提取表格和图片,而且表格是以List的格式保留。其余几个传统的PDF解析库倾向于对pdf进行编辑,比如添加水印,增加或者删除页面等。中文文档效果不好,而且还是通过API使用,但是每天有固定的免费额度,可以用于处理扫描件。deepdoc和MinerU是近期开源项目中比较强大的RAG解析工具。deepdoc优势点在于表格效果较好,亲测无边框的表格有大多数效果仍可圈可点,并且保留为html格式,因此允许合并单元格;MinerU。
Magic-PDF:端到端PDF文档解析神器 构建高质量RAG必备! 比较准确。从上面的图可以看出,无论是可编辑的PDF还是扫描版的PDF,都能非常好的区分出版面中不同类型的部分,而且最终的结果是以Markdown的格式保存的,可以很容易把不同章节、不同自然段按需进行切分。
热门开源Text2SQL框架 Chat2DB项目地址:https://github.com/chat2db/Chat2DB简介:Chat2DB是一个通用的SQL客户端和数据分析工具,能够辅助生成SQL,同时支持对话式的数据分析功能,提供了网页、客户端2种使用方式,它支持几乎所有流行的数据库,并且chat2DB还开源了7B的SQL模型。特性:SQL生成、智能报告、数据探索。架构: SQL Chat项目地址:https://github.com/sqlchat/sqlchat简介:SQL Chat 是一个基于聊天
记使用pdf.js过程遇到的坑 最近项目中需要用到js库来渲染pdf文件,调研后发现无论是reach-pdf.js或者是svelte-pdf.js都是在pdf.js基础上做了些许精简,反而功能还不如原始的pdf.js来得全面。但是原始的库几乎没有像样的代码示例,而能搜索到的大多数代码不少都是十几年前的了,在这个过程中踩了不少坑,做个记录,希望对看到的人有所帮助。
【高级RAG技巧】使用二阶段检索器平衡检索的效率和精度 虽然目前二阶段方法用来提升RAG的性能表现越来越受到关注,但是具体来看,其中所含的技术都是早就有的内容。Cross-Encoder这种架构在当时显得比较鸡肋,只能用来比较句子的相似度,甚至无法输出向量,在大部分自然语言处理场景中都不受待见,谁能想到在如今又焕发生机了呢?
【高级RAG技巧】在大模型知识库问答中增强文档分割与表格提取 openparse这个库算是目前开源社区中比较优秀的文档分割处理库了,功能虽然全面,还是还有不少可以优化的地方,后续也会支持其他向量化模型,并且可以跟LlamaindexLangchain等框架无缝衔接,应该值得持续关注。
向量数据库之Lancedb学习记录 Lancedb是一个用于人工智能的开源矢量数据库,旨在存储、管理、查询和检索大规模多模式数据的嵌入。Lancedb的核心是用Rust编写的,并构建在Lance之上,专为高性能 ML 工作负载和快速随机访问而设计。
向量数据库Chroma学习记录 Chroma是一款AI开源向量数据库,用于快速构建基于LLM的应用,支持Python和Javascript语言。具备轻量化、快速安装等特点,可与Langchain、LlamaIndex等知名LLM框架组合使用。
大白话扩散模型(无公式版) 虽然原始论文涉及到的知识包括随机分布,马尔科夫链等,而且推导过程极其复杂,但本文不会深入去推导相关的公式,而是把重心放在思考这个过程以及对其中发现的一些问题进行探讨。,因为一开始图片质量很高,加很小的噪声就发生很大的变化,而越后面的图片含有噪声越多,失真越严重,必须加更大的噪声才能引起较大变化。如果玩过文生图的话就能发现,选择了一定的采样步数后,前几步图片变化非常大,从模糊的噪声逐渐出现轮廓,后面几步基本不变,只是一些细节发生了变化。,然后我们用来进行训练一个模型,拟合训练数据的分布之后,就可以预测出。
llm构建数据标注助手 在LLM出现之前,传统的深度学习模型(包括CV和NLP)就已经需要大量的数据进行训练和微调。没有足够的数据,或者数据需要进行二次加工(比如标签标注),这些问题都成为限制深度学习模型泛化的关键。对于第一个问题,一般就是从网络上爬虫或者花大价钱从数据供应商购买数据;对于第二种情况,一般是找外包进行标注,这在业界非常普遍。
Chat2table,简易表格分析助手 之前用智谱AI的Chatglm3-6b模型写过一个简单的论文阅读助手,可用来辅助论文阅读等。而像表格,如Excel、CSV文件等内容的分析,也是不可忽略的需要,因此本文同样使用Chatglm3-6b来搭建一个表格分析助手,用于快速分析表格的内容,提取有效的信息。ChatGLM3 采用了全新的对话格式,除最基本的对话外,还支持工具调用和代码执行。简单来说,代码执行属于工具调用的子类,只是提示词不一样,而这两种功能是通过修改微调阶段的提示词来实现的。
8k中英双语文本嵌入模型效果初探 向量模型用于生成向量表示,被广泛应用于检索、分类、聚类或语义匹配等传统的自然语言处理任务。到了大模型时代,由于上下文长度的限制,需要压缩、存储和查询大量的信息,这就需要用到向量模型对输入的文本进行向量化表示,然后再喂给大模型,以得到期望的输出。,例如处理数十页的报告综述等。