分治法的3个步骤
1.划分问题: 把问题的实例划分成子问题
2.递归求解:递归解决子问题
3.合并问题:合并子问题的解得到原问题的解
分治法求解
int maxsum(int *A , int x, int y)
{ // 数组A在[x,y) 区间中的最大连续和
int v,L,R,maxs;
if(y-x ==1) return A[x]; //递归出口,只有一个元素直接返回
int m=x+(y-x)/2; // 分治第一步:划分[x,m) 和[m,y)
maxs =max(maxsum(A,x,m) , maxsum(A,m,y)); //分治第二步:递归求解
//分治第三步:合并(1)– 从分界点开始往左的最大连续和L
v=0,L=A[m-1];
for(int i=m-1;i>=x;i–) L = max(L,v+=A[i]);
//分治第三步:合并(2)– 从分界点开始往右的最大连续和R
v=0,R=A[m];
for(int i=m;i<=y;i++) R = max(R,v+=A[i]);
return max(maxs,L+R); //子问题解和L+R比较
}
时间复杂度:T(n) = 2T(n/2)+n, T(1)=1; T(n) = O(nlogn)
分治法讲解及实例
最新推荐文章于 2024-09-20 11:50:24 发布