C. Andryusha and Colored Balloons
time limit per test:2 seconds
memory limit per test:256 megabytes
input:standard input
output:standard output
Andryusha goes through a park each day. The squares and paths between them look boring to Andryusha, so he decided to decorate them.
The park consists of n squares connected with (n - 1) bidirectional paths in such a way that any square is reachable from any other using these paths. Andryusha decided to hang a colored balloon at each of the squares. The baloons’ colors are described by positive integers, starting from 1. In order to make the park varicolored, Andryusha wants to choose the colors in a special way. More precisely, he wants to use such colors that if a, b and c are distinct squares that a and b have a direct path between them, and b and c have a direct path between them, then balloon colors on these three squares are distinct.
Andryusha wants to use as little different colors as possible. Help him to choose the colors!
Input
The first line contains single integer n (3 ≤ n ≤ 2·105) — the number of squares in the park.
Each of the next (n - 1) lines contains two integers x and y (1 ≤ x, y ≤ n) — the indices of two squares directly connected by a path.
It is guaranteed that any square is reachable from any other using the paths.
Output
In the first line print single integer k — the minimum number of colors Andryusha has to use.
In the second line print n integers, the i-th of them should be equal to the balloon color on the i-th square. Each of these numbers should be within range from 1 to k.
Examples
Input
3
2 3
1 3
Output
3
1 3 2
Input
5
2 3
5 3
4 3
1 3
Output
5
1 3 2 5 4
Input
5
2 1
3 2
4 3
5 4
Output
3
1 2 3 1 2
题意:给出一个n个点n-1条边的树,要求距离小于等于2的点不能同色。问最少需要几种颜色以及任意一种方案。
题解:需要颜色的数量=最大度数+1,然后dfs染色就好。
代码:
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N=300050;
vector<int >mp[N];
int clr[N];
int dge[N];
int ans,n;
void Dfs(int u,int from)
{
int tmp=1;
for(int i=0; i<mp[u].size(); i++)
{
int v=mp[u][i];
if(v==from)continue;
else
{
for(int j=tmp; j<=ans; j++)
{
if(j!=clr[u])
{
if(from==-1)
{
clr[v]=j;
tmp=j+1;
break;
}
else if(j!=clr[from])
{
clr[v]=j;
tmp=j+1;
break;
}
}
}
Dfs(v,u);
}
}
}
void input()
{
cin>>n;
for(int i=1; i<=n; i++)mp[i].clear();
memset(dge,0,sizeof(dge));
for(int i=0; i<n-1; i++)
{
int x,y;
cin>>x>>y;
mp[x].push_back(y);
mp[y].push_back(x);
dge[x]++;
dge[y]++;
}
}
void output()
{
ans=0;
for(int i=1; i<=n; i++)ans=max(ans,dge[i]);
ans++;
cout<<ans<<endl;
clr[1]=1;
Dfs(1,-1);
for(int i=1; i<=n; i++)
{
cout<<clr[i]<<" ";
}
}
int main()
{
input();
output();
}