51nod 1251 Fox序列的数量 容斥原理+数学

博客探讨了如何计算满足特定条件的Fox序列数量。Fox序列是单调非递减且出现频率最高的元素唯一。通过容斥原理和数学分析,枚举序列中最大频率元素的个数及其不合法情况,计算出符合条件的序列总数。文章适合对算法和数学感兴趣的人群阅读。

题意

一个单调非递减序列被称为 Fox 序列,当且仅当序列里边出现频率最高的元素是唯一的。
例如:序列 1, 1, 2, 3, 4 是一个 Fox 序列, 因为它符合定义。出现频率最高的元素是1,它出现了2次,并且没有别的元素出现的次数为2。
但是序列 1, 1, 2, 2 不是 Fox 序列, 因为1 和 2 都出现了2次,不是唯一的。
注意: 序列 2, 1, 1 不是 Fox 序列, 因为他不是单调非递减的序列。
给出N,M,计算有多少个长度为N的 Fox 序列,满足序列的所有元素都 >= 1并且 <= M。由于结果很大,输出Mod 1000000007的结果。
1 <= T <= 20,1 <= N, M <= 10^5

分析

考虑枚举出现最多元素的数量k,然后枚举有多少个数一定不合法(最多n/k个),用容斥减掉不合法的方案就好了。
具体来讲就是 除了选定那个数以外其他随便选-除了它以外至少有一个数出现次数不小于k的方案。

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;

typedef long long LL;

const int N=200005;
const int MOD=1000000007;

int n,m,ny[N],jc[N];

int get_c(int n,int m)
{
    if (n<m) return 0;
    return (LL)jc[n]*ny[m]%MOD*ny[n-m]%MOD;
}

int main()
{
    jc[0]=jc[1]=ny[0]=ny[1]=1;
    for (int i=2;i<=200000;i++) jc[i]=(LL)jc[i-1]*i%MOD,ny[i]=(LL)(MOD-MOD/i)*ny[MOD%i]%MOD;
    for (int i=2;i<=200000;i++) ny[i]=(LL)ny[i]*ny[i-1]%MOD;
    int T;scanf("%d",&T);
    while (T--)
    {
        scanf("%d%d",&n,&m);
        int ans=0;
        for (int i=1;i<=n;i++)
        {
            (ans+=(LL)m*get_c(max(n+m-i-2,0),n-i)%MOD)%=MOD;
            for (int j=1;(j+1)*i<=n;j++)
                if (j&1) (ans+=MOD-(LL)m*get_c(m-1,j)%MOD*get_c(n+m-i*j-i-2,n-i*j-i)%MOD)%=MOD;
                else (ans+=(LL)m*get_c(m-1,j)%MOD*get_c(n+m-i*j-i-2,n-i*j-i)%MOD)%=MOD;
        }
        printf("%d\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值