卡尔曼滤波及Matlab实现

本文介绍了卡尔曼滤波的基本原理和在组合导航系统中的应用,详细阐述了其目标、使用条件和公式。通过Matlab程序示例展示了卡尔曼滤波在匀速直线运动中的应用,探讨了滤波在INS/GPS组合导航中的作用和拓展应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

卡尔曼滤波及Matlab实现

一、什么是卡尔曼滤波

 滤波是从信号中提取有用信息的过程,比如从电信号中提取有用的频谱分量,从观测到的物体轨迹中提取位置信息,滤除图像信号中的噪声等。卡尔曼滤波是一种有效的滤波方法。如果已知一个系统的状态方程,又可以通过外部手段对系统进行观测,得到量测方程,就可以应用卡尔曼滤波估计系统的状态。

1.1卡尔曼滤波的目标和使用条件

 卡尔曼滤波是一种线性最小方差估计,目的是使估计的均方误差最小,即:
E { [ X − X ^ ( Z ) ] [ X − X ^ ( Z ) ] T } E\{[X-\hat{X}(Z)][X-\hat{X}(Z)]^T\} E{[XX^(Z)][XX^(Z)]T}

最小。 X ^ ( Z ) \hat{X}(Z) X^(Z)为用Z计算而得的X的最小方差估计值,且 X ^ ( Z ) \hat{X}(Z) X^(Z)为量测向量Z的线性函数,即:
X ^ = A Z + b \hat{X}=AZ+b X^=AZ+b
X ~ = X − X ^ \tilde{X}=X- \hat{X} X~=XX^为估计误差,又称残差。
这里估计的 X X X是一个观测值,也就是实际情况中得到的数据,在组合导航中就是物体真实的运动参数。
线性最小方差估计 X ^ \hat{X} X^具有以下性质:
无偏性,即 E { X ^ } = E { X } E\{\hat{X}\}=E\{X\} E{ X^}=E{ X}
正交性,即 E { [ ( X − X ^ ) Z T ] } = 0 E\{[(X-\hat{X})Z^T]\}=0 E{[(XX^)ZT]}=0
E { X ~ ⋅ X ~ T } E\{\tilde{X} \cdot\tilde{X}^T\} E{ X~X~T</

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值