卡尔曼滤波及Matlab实现
一、什么是卡尔曼滤波
滤波是从信号中提取有用信息的过程,比如从电信号中提取有用的频谱分量,从观测到的物体轨迹中提取位置信息,滤除图像信号中的噪声等。卡尔曼滤波是一种有效的滤波方法。如果已知一个系统的状态方程,又可以通过外部手段对系统进行观测,得到量测方程,就可以应用卡尔曼滤波估计系统的状态。
1.1卡尔曼滤波的目标和使用条件
卡尔曼滤波是一种线性最小方差估计,目的是使估计的均方误差最小,即:
E { [ X − X ^ ( Z ) ] [ X − X ^ ( Z ) ] T } E\{[X-\hat{X}(Z)][X-\hat{X}(Z)]^T\} E{[X−X^(Z)][X−X^(Z)]T}
最小。 X ^ ( Z ) \hat{X}(Z) X^(Z)为用Z计算而得的X的最小方差估计值,且 X ^ ( Z ) \hat{X}(Z) X^(Z)为量测向量Z的线性函数,即:
X ^ = A Z + b \hat{X}=AZ+b X^=AZ+b
X ~ = X − X ^ \tilde{X}=X- \hat{X} X~=X−X^为估计误差,又称残差。
这里估计的 X X X是一个观测值,也就是实际情况中得到的数据,在组合导航中就是物体真实的运动参数。
线性最小方差估计 X ^ \hat{X} X^具有以下性质:
无偏性,即 E { X ^ } = E { X } E\{\hat{X}\}=E\{X\} E{
X^}=E{
X}。
正交性,即 E { [ ( X − X ^ ) Z T ] } = 0 E\{[(X-\hat{X})Z^T]\}=0 E{[(X−X^)ZT]}=0。
E { X ~ ⋅ X ~ T } E\{\tilde{X} \cdot\tilde{X}^T\} E{
X~⋅X~T</

本文介绍了卡尔曼滤波的基本原理和在组合导航系统中的应用,详细阐述了其目标、使用条件和公式。通过Matlab程序示例展示了卡尔曼滤波在匀速直线运动中的应用,探讨了滤波在INS/GPS组合导航中的作用和拓展应用。
最低0.47元/天 解锁文章
9504

被折叠的 条评论
为什么被折叠?



