
2014年,GoogLeNet和VGG是当年ImageNet挑战赛(ILSVRC14)的双雄,GoogLeNet获得了第一名、VGG获得了第二名,这两类模型结构的共同特点是层次更深了。VGG继承了LeNet以及AlexNet的一些框架结构(详见 大话CNN经典模型:VGGNet),而GoogLeNet则做了更加大胆的网络结构尝试,虽然深度只有22层,但大小却比AlexNet和VGG小很多,GoogleNet参数为500万个,AlexNet参数个数是GoogleNet的12倍,VGGNet参数又是AlexNet的3倍,因此在内存或计算资源有限时,GoogleNet是比较好的选择;从模型结果来看,GoogLeNet的性能却更加优越。
小知识:GoogLeNet是谷歌(Google)研究出来的深度网络结构,为什么不叫“GoogleNet”,而叫“GoogLeNet”,据说是为了向“LeNet”致敬,因此取名为“GoogLeNet”
那么,GoogLeNet是如何进一步提升性能的呢?
一般来说,提升网络性能最直接的办法就是增加网络
GoogLeNet是2014年ILSVRC挑战赛冠军,其设计思路是通过Inception结构减少参数量,提升性能。Inception V1引入了1x1卷积降低特征图厚度,V2通过卷积分解和并行化降低计算量,V3继续分解大卷积核,V4结合ResNet的残差连接。各个版本不断优化,提升网络性能的同时保持高效计算。
订阅专栏 解锁全文
713

被折叠的 条评论
为什么被折叠?



