- 博客(47)
- 收藏
- 关注
转载 DL-Pytorch-LeNet
LeNet 模型LeNet分为卷积层块和全连接层块两个部分。下面我们分别介绍这两个模块。卷积层块里的基本单位是卷积层后接平均池化层:卷积层用来识别图像里的空间模式,如线条和物体局部,之后的平均池化层则用来降低卷积层对位置的敏感性。卷积层块由两个这样的基本单位重复堆叠构成。在卷积层块中,每个卷积层都使用5×55 \times 55×5的窗口,并在输出上使用sigmoid激活函数。第一个卷积层...
2020-02-18 19:44:02
183
转载 DL-Pytorch-卷积神经网络
卷积神经网络基础二维卷积层介绍的是最常见的二维卷积层,常用于处理图像数据。二维互相关运算二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘并求和,得到输出...
2020-02-17 19:38:37
200
转载 DL-Pytorch-多层感知机
多层感知机多层感知机的基本知识使用多层感知机图像分类的从零开始的实现使用pytorch的简洁实现多层感知机的基本知识深度学习主要关注多层模型。在这里,我们将以多层感知机(multilayer perceptron,MLP)为例,介绍多层神经网络的概念。隐藏层下图展示了一个多层感知机的神经网络图,它含有一个隐藏层,该层中有5个隐藏单元。表达公式具体来说,给定一个小批量样本X∈...
2020-02-15 16:21:35
225
转载 DL-Pytorch-Softmax模型
softmax和分类模型内容包含:softmax回归的基本概念如何获取Fashion-MNIST数据集和读取数据softmax回归模型的从零开始实现,实现一个对Fashion-MNIST训练集中的图像数据进行分类的模型使用pytorch重新实现softmax回归模型softmax的基本概念分类问题一个简单的图像分类问题,输入图像的高和宽均为2像素,色彩为灰度。图像中的4像...
2020-02-14 15:40:14
257
转载 DL-Pytorch-线性回归
线性回归模型为了简单起见,这里我们假设价格只取决于房屋状况的两个因素,即面积(平方米)和房龄(年)。接下来我们希望探索价格与这两个因素的具体关系。线性回归假设输出与各个输入之间是线性关系:数据集我们通常收集一系列的真实数据,例如多栋房屋的真实售出价格和它们对应的面积和房龄。我们希望在这个数据上面寻找模型参数来使模型的预测价格与真实价格的误差最小。在机器学习术语里,该数据集被称为...
2020-02-14 09:37:53
237
原创 CodeBlocks单步调试功能记录
1、F5设置标记断点 2、F4进入debug调试 3、F7下一步调试 4、shift+F7进入函数单步调试 5、如要观察数组变量,在watch窗口新建变量为数组名称,右键点击选择properties,勾选“watch as array”并指定start index和array length,然后就OK啦。 ...
2018-08-02 19:12:42
4142
原创 C++/C中 sizeof(指针)和sizeof(数组名)的区别
#include <iostream>using namespace std;template<class T>int length(T& data){ return sizeof(data)/sizeof(data[0]);}int main(){int data[]={2,45,7,8,9,23,4,6,7,8,0}; int dat...
2018-08-02 17:19:14
14762
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅