1010 Radix (25 分)

版权声明:转载留名即可 ^_^ https://blog.csdn.net/qq_33375598/article/details/88375068

 

Given a pair of positive integers, for example, 6 and 110, can this equation(方程、等式) 6 = 110 be true? The answer is yes, if 6 is a decimal number and 110 is a binary number.

Now for any pair of positive integers N​1​​ and N​2​​, your task is to find the radix of one number while that of the other is given.

Input Specification:

Each input file contains one test case. Each case occupies a line which contains 4 positive integers:


N1 N2 tag radix

Here N1 and N2 each has no more than 10 digits. A digit is less than its radix and is chosen from the set { 0-9, a-z } where 0-9 represent the decimal numbers 0-9, and a-z represent the decimal numbers 10-35. The last number radix is the radix of N1 if tag is 1, or of N2 if tag is 2.

Output Specification:

For each test case, print in one line the radix of the other number so that the equation N1 = N2 is true. If the equation is impossible, print Impossible. If the solution is not unique, output the smallest possible radix.

Sample Input 1:

6 110 1 10

Sample Output 1:

2

Sample Input 2:

1 ab 1 2

Sample Output 2:

Impossible

参考代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

typedef long long LL;
LL Map[256];
LL inf = (1LL << 63) - 1;   //long long的最大数

void init(){
    for (char i = '0'; i <= '9'; ++i) {//将0~9映射0~9
        Map[i] = i - '0';
    }
    for (char i = 'a'; i <= 'z'; ++i) {//将a~z映射10~35
        Map[i] = i - 'a' + 10;
    }
}

LL changeradix10(char A[], LL radix, LL t){//转换为10进制,t为上届
    LL ans = 0;                 //以防溢出
    int len = strlen(A);
    for (int i = 0; i < len; ++i) {
        ans = ans * radix + Map[A[i]];
        if(ans < 0 || ans > t) return -1;//溢出或超过N1的十进制
    }

    return ans;
}

int findLargeNum(char N2[]){    //寻找最大的数位,作为进制转换最小数
    int ans = -1;
    int len = strlen(N2);
    for (int i = 0; i < len; ++i) {
        if(Map[N2[i]] > ans) ans = Map[N2[i]];
    }
    return ans +1;
}

int cmp(char N2[], LL radix, LL t){ //N2的十进制与t比较
    LL num = changeradix10(N2, radix , t);
    if(num < 0) return 1;   //N2较大
    if(num < t){            //t较大
        return -1;
    } else if(num == t){    //相等
        return 0;
    }else{
        return 1;
    }
}

LL binartSearch(char N2[],LL left, LL right, LL t){//二分法求N2的进制数
    LL mid;
    while (left <= right){
        mid = (left + right) / 2;
        int ans = cmp(N2, mid, t);
        if(ans == 0){       //找到解,返回
            return  mid;
        }else if(ans == 1){//往左子区间继续查找
            right = mid - 1;
        }else{              //往右子区间继续查找
            left = mid + 1;
        }
    }
    return  -1;     //解不存在
}

int tag, radix;
char N1[20], N2[20], temp[20];

int main(){
    init();
    scanf("%s%s%d%d", N1, N2, &tag, &radix);
    if(tag == 2){
        strcpy(temp, N1);
        strcpy(N1, N2);
        strcpy(N2, temp);
    }

    LL t = changeradix10(N1, radix, inf);
    LL low = findLargeNum(N2);
    LL high = max(low, t) + 1;
    LL ans = binartSearch(N2, low ,high, t);
    if(ans == -1){
        printf("Impossible\n");
    }else{
        printf("%lld\n", ans);
    }
    return  0;
}

 

没有更多推荐了,返回首页