# poj 3259 bellman-ford算法 判断是否存在负权回路

Wormholes
 Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 41838 Accepted: 15364

Description

While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..NM (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input

Line 1: A single integer, FF farm descriptions follow.
Line 1 of each farm: Three space-separated integers respectively: NM, and W
Lines 2..M+1 of each farm: Three space-separated numbers (SET) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path.
Lines M+2..M+W+1 of each farm: Three space-separated numbers (SET) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.

Output

Lines 1..F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).

Sample Input

2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8

Sample Output

NO
YES

Hint

For farm 1, FJ cannot travel back in time.
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.

Source

USACO 2006 December Gold

bellman-ford的模版～

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
using namespace std;

#define INF 0x3f3f3f3f
#define N 1100
int n,m,w,tol;
struct node
{
int s,e,t;
}p[5100];

int bellman()
{
int i,j,dis[N];
for(i=1;i<=n;i++)
{
dis[i]=(i==1)?0:INF;
}

for(i=0;i<=n-1;i++)
{
int f=0;
for(j=0;j<tol;j++)
{
if(dis[p[j].e]>dis[p[j].s]+p[j].t)
{
dis[p[j].e]=dis[p[j].s]+p[j].t;
f=1;
}
}
if(f==0)
break;
}

for(i=0;i<tol;i++)
{
if(dis[p[i].e]>dis[p[i].s]+p[i].t)
return 1;
}
return 0;
}

int main()
{
int T,a,b,c,i;
scanf("%d",&T);
while(T--)
{
tol=0;
scanf("%d%d%d",&n,&m,&w);
for(i=1;i<=m;i++)
{
scanf("%d%d%d",&a,&b,&c);
p[tol].s=a;
p[tol].e=b;
p[tol].t=c;
tol++;
p[tol].s=b;
p[tol].e=a;
p[tol].t=c;
tol++;
}
for(i=1;i<=w;i++)
{
scanf("%d%d%d",&a,&b,&c);
p[tol].s=a;
p[tol].e=b;
p[tol].t=-c;
tol++;
}
if(bellman())
printf("YES\n");
else
printf("NO\n");
}
return 0;
}

#### bellman-ford算法——最短路问题，判断是否存在负权回路或正权回路

2015-11-09 10:37:51

#### Bellman-Ford算法——解决负权边

2017-03-01 09:07:28

#### POJ 3259 判断图中是否存在负权回路

2013-09-03 21:49:43

#### Bellman-Ford------解决负权边

2015-02-27 21:51:01

#### bellman ford 算法 判断是否存在负环

2016-11-26 21:19:53

#### 练习题 No.22 判断是否有负圈（Bellman-Ford算法）

2017-05-14 09:07:02

#### 最短路径（三）—Bellman-Ford算法（解决负权边）

2015-02-03 15:45:35

#### 【spfa 判断负权回路】POJ - 3259 Wormholes

2017-06-19 11:48:03

#### Bellman-For判断负权回路

2015-07-14 21:54:41

#### Bellman-Ford算法---求包含负权边单源最短路径（动态规划）

2015-06-04 22:43:13