问题背景
方差好像和标准差没差区别呀,就是开了个根号而已,那么为什么打多数情况下使用标准差呢?
问题解答方差是衡量随机变量或一组数据时离散程度的度量。方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个样本数据和平均数之差的平方和的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。方差公式的计算公式如下:
标准差又称均方差,是方差的算数平方根,标准差的公式如下:
样本标准差的计算公式为:
可以看到标准差的概念是基于方差的,仅仅是求了一个平方根而已。那么为什么要造出标准差这样一个概念呢?简单来说,方差单位和数据的单位不一致,没法使用,虽然能很好的描述数据与均值的偏离程度,但是处理结果是不符合我们的直观思维的。而标准差和数据的单位一致,使用起来方便。内在原因就是方差开了一个平方,而标准差通过加了一个根号使得和均值的量纲(单位)保持了一致,在描述一个波动范围时标准差比方差更方便。
与方差相比,使用标准差来表示数据点的离散程度有3个好处:
1、表示离散程度的数字与样本数据点的数量级一致,更适合对数据样本形成感性认知。
2、表示离散程度的数字单位与样本数据的单位一致,更方便做后续的分析运算。
3、在样本数据大致符合正态分布的情况下,标准差具有方便估算的特性:68%的数据点落在平均值前后1个标准差的范围内、95%的数据点落在平均值前后2个标准差的范围内,而99%的数据点将会落在平均值前后3个标准差的范围内。
参考
[1] https://www.zhihu.com/question/20534502/answer/2028365946
[2] https://www.cnblogs.com/13224ACMer/p/11799030.html
推荐阅读:
公众号:AI蜗牛车
保持谦逊、保持自律、保持进步
发送【蜗牛】获取一份《手把手AI项目》(AI蜗牛车著)
发送【1222】获取一份不错的leetcode刷题笔记
发送【AI四大名著】获取四本经典AI电子书