【SLAM】姓李名群

说在前面

水水水

名群的

  • 群是一种集合加上一种运算的代数结构。
  • 性质:
    1. 封闭性: ∀ a 1 , a 2 ∈ A , a 1 ⋅ a 2 ∈ A ∀a_1,a_2 ∈ A, a_1 ·a_2 ∈ A a1,a2A,a1a2A
      这里的 · 表示一种运算符,并不是点乘
    2. 结合律: ∀ a 1 , a 2 , a 3 ∈ A , ( a 1 ⋅ a 2 ) ⋅ a 3 = a 1 ⋅ ( a 2 ⋅ a 3 ) ∀a_1,a_2,a_3 ∈ A, (a_1 ·a_2)·a_3 = a_1 ·(a_2 ·a_3) a1,a2,a3A,(a1a2)a3=a1(a2a3)
    3. 幺元: ∃ a 0 ∈ A , s . t . ∀ a ∈ A , a 0 ⋅ a = a ⋅ a 0 = a ∃a_0 ∈ A, s.t. ∀a ∈ A, a_0 ·a = a·a_0 = a a0A,s.t.aA,a0a=aa0=a
      举个栗子,在实数加法中, a 0 = 0 a_0=0 a0=0
    4. 逆: ∀ a ∈ A , ∃ a − 1 ∈ A , s . t . a ⋅ a − 1 = a 0 ∀a ∈ A, ∃a^{−1} ∈ A, s.t. a·a^{−1} = a_0 aA,a1A,s.t.aa1=a0

姓李的

  • 李群是指具有连续(光滑)性质的群。

李群代交数学

  • 引入

    对于旋转矩阵R,满足 R R T = I RR^T=I RRT=I,将R看为时间的函数R(t),则:
    R ( t ) ⋅ R ( t ) T = I R(t)\cdot R(t)^T=I R(t)R(t)T=I
    两边同时求导:
    R ( t ) ′ ⋅ R ( t ) T + R ( t ) ⋅ ( R ( t ) T ) ′ = 0 ⇓ R = ( R T ) T R ( t ) ′ ⋅ R ( t ) T + ( R ( t ) T ⋅ R ( t ) ′ ) T = 0 ⇓ g e t R ( t ) ′ ⋅ R ( t ) T = − ( R ( t ) ′ ⋅ R ( t ) T ) T R(t)'\cdot R(t)^T + R(t)\cdot (R(t)^T)' = 0\\ \Downarrow R=(R^T)^T \\ R(t)'\cdot R(t)^T + (R(t)^T\cdot R(t)')^T = 0\\ \Downarrow get \\ R(t)'\cdot R(t)^T = -(R(t)'\cdot R(t)^T)^T R(t)R(t)T+R(t)(R(t)T)=0R=(RT)TR(t)R(t)T+(R(t)TR(t))T=0getR(t)R(t)T=(R(t)R(t)T)T
    因此, R ( t ) ′ ⋅ R ( t ) T R(t)'\cdot R(t)^T R(t)R(t)T是一个反对称矩阵。
    (主对角线为0,其余反对称
    S = [ x 11 x 12 x 13 x 21 x 22 x 23 x 31 x 32 x 33 ] = [ − x 11 − x 21 − x 31 − x 12 − x 22 − x 32 − x 13 − x 23 − x 33 ] = − S T S= \left[ \begin{matrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \\ \end{matrix} \right] =\left[ \begin{matrix} -x_{11} & -x_{21} & -x_{31} \\ -x_{12} & -x_{22} & -x_{32} \\ -x_{13} & -x_{23} & -x_{33} \\ \end{matrix} \right]= -S^T S=x11x21x31x12x22x32x13x23x33=x11x12x13x21x22x23x31x32x33=ST)
    之前有提到^表示一个三维向量的反对称矩阵化过程,即 a ⃗ ˄ = A \vec a^{˄} = A a ˄=A(A为反对称矩阵),现在我们定义 A ˅ = a ⃗ A^{˅}=\vec a A˅=a ,那么:
    R ( t ) ′ ⋅ R ( t ) T = ϕ ( t ) ˄ ⇓ r i g h t ⋅ R ( t ) R ( t ) ′ = ϕ ( t ) ˄ ⋅ R ( t ) = [ 0 − ϕ 3 ϕ 2 ϕ 3 0 − ϕ 1 − ϕ 2 ϕ 1 0 ] ⋅ R ( t ) R(t)'\cdot R(t)^T=\phi(t)^˄ \\ \Downarrow right \cdot R(t) \\ R(t)' = \phi(t)^˄\cdot R(t)= \left[ \begin{matrix} 0 & -\phi_3 & \phi_2 \\ \phi_3 & 0 & -\phi_1 \\ -\phi_2 & \phi_1 & 0 \\ \end{matrix} \right]\cdot R(t) R(t)R(t)T=ϕ(t)˄rightR(t)R(t)=ϕ(t)˄R(t)=0ϕ3ϕ2ϕ30ϕ1ϕ2ϕ10R(t)
    t 0 t_0 t0 附近,设 ϕ ϕ ϕ 保持为常数 ϕ ( t 0 ) = ϕ 0 ϕ(t_0) = ϕ_0 ϕ(t0)=ϕ0。那么有
    R ( t ) ′ = ϕ ( t 0 ) ∧ R ( t ) = ϕ 0 ∧ R ( t ) R(t)' = ϕ(t_0)^∧R(t) = ϕ_0^∧R(t) R(t)=ϕ(t0)R(t)=ϕ0R(t)
    上式是一个关于 R 的微分方程,而且我们知道初始值 R ( 0 ) = I R(0) = I R(0)=I,解之,得:
    R ( t ) = e x p ( ϕ 0 ∧ t ) R(t) = exp(ϕ_0^∧t) R(t)=exp(ϕ0t)

  • 定义

    由集合+数域+二元运算组成,且满足:

    1. 封闭性 ∀ X , Y ∈ V , [ X , Y ] ∈ V ∀X,Y ∈V,[X,Y ] ∈V X,YV,[X,Y]V
      这个好理解,就像群一样
    2. 双线性 ∀ X , Y , Z ∈ V , a , b ∈ F ∀X,Y ,Z ∈V,a,b ∈F X,Y,ZV,a,bF, 有:
      [ a X + b Y , Z ] = a [ X , Z ] + b [ Y , Z ] , [ Z , a X + b Y ] = a [ Z , X ] + b [ Z , Y ] [aX + bY ,Z] = a[X,Z] + b[Y ,Z], [Z,aX + bY ] = a[Z,X] + b[Z,Y ] [aX+bY,Z]=a[X,Z]+b[Y,Z],[Z,aX+bY]=a[Z,X]+b[Z,Y]
      这个也好理解,就像分解律一样
    3. 自反性 ¬ ∀ X ∈ V , [ X , X ] = 0 ¬ ∀X ∈V,[X,X] = 0 ¬XV,[X,X]=0
    4. 雅可比等价 ∀ X , Y , Z ∈ V , [ X , [ Y , Z ] ] + [ Z , [ Y , X ] ] + [ Y , [ Z , X ] ] = 0 ∀X,Y ,Z ∈V,[X,[Y ,Z]] + [Z,[Y ,X]] + [Y ,[Z,X]] = 0 X,Y,ZV,[X,[Y,Z]]+[Z,[Y,X]]+[Y,[Z,X]]=0
      这个怎么理解,,,
  • so(3)

    • 定义
      s o ( 3 ) = { ϕ ∈ R 3 , Φ = ϕ ∧ ∈ R 3 × 3 } so(3) =\{\phi ∈R^3,\Phi = ϕ^∧ ∈R^{3×3}\} so(3)={ϕR3,Φ=ϕR3×3}
      其中:
      Φ = ϕ ∧ = [ 0 − ϕ 3 ϕ 2 ϕ 3 0 − ϕ 1 − ϕ 2 ϕ 1 0 ] \Phi = \phi^∧ = \left[ \begin{matrix} 0 & -\phi_3 & \phi_2 \\ \phi_3 & 0 & -\phi_1 \\ -\phi_2 & \phi_1 & 0 \\ \end{matrix}\right] Φ=ϕ=0ϕ3ϕ2ϕ30ϕ1ϕ2ϕ10
      二元运算为:
      [ ϕ 1 , ϕ 2 ] = ( Φ 1 Φ 2 − Φ 2 Φ 1 ) ∨ [\phi_1,\phi_2] = (\Phi_1\Phi_2 −\Phi_2\Phi_1)^∨ [ϕ1,ϕ2]=(Φ1Φ2Φ2Φ1)
      指数映射为:
      R = e x p ( ϕ ∧ ) R = exp(\phi^∧) R=exp(ϕ)
    • 映射
      在收敛的情况下进行泰勒展开:
      e x p ( ϕ ∧ ) = ∑ n = 0 ∞ 1 n ! ( ϕ ∧ ) n exp(\phi^∧)=\sum_{n=0}^\infty\frac{1}{n!}(\phi^∧)^n exp(ϕ)=n=0n!1(ϕ)n
      由于 ϕ \phi ϕ为一个三维向量,可以用 ϕ = θ a ⃗ \phi=\theta \vec a ϕ=θa ( θ \theta θ为大小, a ⃗ \vec a a 为单位向量)
      (
      下面俩的证明可以令:
      a = [ a 1 a 2 a 3 ] a=\left[\begin{matrix}a_1\\a_2\\a_3\end{matrix}\right] a=a1a2a3
      比较容易证明
      a ∧ a ∧ = a a T − I a^∧a^∧=aa^T-I aa=aaTI
      a ∧ a ∧ a ∧ = − a ∧ a^∧a^∧a^∧=-a^∧ aaa=a
      )
      那么(矩阵的零次方为单位阵):
      e x p ( ϕ ∧ ) = e x p ( θ a ∧ ) = ∑ n = 0 ∞ 1 n ! ( θ a ∧ ) n = I + θ a ∧ + 1 2 ! θ 2 a ∧ a ∧ + 1 3 ! θ 3 a ∧ a ∧ a ∧ + 1 4 ! θ 4 ( a ∧ ) 4 + . . . = a a T − a ∧ a ∧ + θ a ∧ + 1 2 ! θ 2 a ∧ a ∧ − 1 3 ! θ 3 a ∧ − 1 4 ! θ 4 ( a ∧ ) 2 + . . . = a a T + ( θ − 1 3 ! θ 3 + 1 5 ! θ 5 − . . . ) a ∧ − ( 1 − 1 2 ! θ 2 + 1 4 ! θ 4 − . . . ) a ∧ a ∧ = a ∧ a ∧ + I + s i n θ a ∧ − c o s θ a ∧ a ∧ = ( 1 − c o s θ ) a ∧ a ∧ + I + s i n θ a ∧ = c o s θ I + ( 1 − c o s θ ) a a T + s i n θ a ∧ \begin{aligned} exp(ϕ^∧) = exp(θa^∧) &=∑_{n=0}^\infty\frac{1}{ n!}(θa^∧)^n \\ &= I + θa^∧ + \frac{1}{2!}θ^2a^∧a^∧ + \frac{1}{3!}θ^3a^∧a^∧a^∧ + \frac{1}{4!}θ^4(a^∧)^4 + ...\\ &= aa^T −a^∧a^∧ + θa^∧ + \frac{1}{2!}θ^2a^∧a^∧− \frac{1}{3!}θ^3a^∧− \frac{1}{4!}θ^4(a^∧)^2+...\\ &= aa^T +(θ− \frac{1}{ 3!}θ^3 + \frac{1 }{5!}θ^5 −...)a^∧−(1− \frac{1 }{2!}θ^2 + \frac{1 }{4!}θ^4−...)a^∧a^∧\\ &= a^∧a^∧ + I +sinθa^∧−cosθa^∧a^∧ \\ &= (1−cosθ)a^∧a^∧ + I +sinθa^∧\\ &= cosθI + (1−cosθ)aa^T +sinθa^∧ \end{aligned} exp(ϕ)=exp(θa)=n=0n!1(θa)n=I+θa+2!1θ2aa+3!1θ3aaa+4!1θ4(a)4+...=aaTaa+θa+2!1θ2aa3!1θ3a4!1θ4(a)2+...=aaT+(θ3!1θ3+5!1θ5...)a(12!1θ2+4!1θ4...)aa=aa+I+sinθacosθaa=(1cosθ)aa+I+sinθa=cosθI+(1cosθ)aaT+sinθa
      s i n θ = θ − 1 3 ! θ 3 + 1 5 ! θ 5 − . . . c o s θ = 1 − 1 2 ! θ 2 + 1 4 ! θ 4 − . . . sin\theta = θ− \frac{1}{ 3!}θ^3 + \frac{1 }{5!}θ^5 −...\\ cos\theta = 1− \frac{1 }{2!}θ^2 + \frac{1 }{4!}θ^4−... sinθ=θ3!1θ3+5!1θ5...cosθ=12!1θ2+4!1θ4...
      即:
      e x p ( ϕ ∧ ) = c o s θ I + ( 1 − c o s θ ) a a T + s i n θ a ∧ exp(ϕ^∧)= cosθI + (1−cosθ)aa^T +sinθa^∧ exp(ϕ)=cosθI+(1cosθ)aaT+sinθa
      罗德里格斯公式一样,这样我们就将旋转向量空间映射到指数空间。
  • se(3)

    • 定义
      s e ( 3 ) = { ξ = [ ρ ϕ ] ∈ R 6 , ρ ∈ R 3 , ϕ ∈ s o ( 3 ) , ξ ∨ = [ ϕ ∧ ρ 0 T 0 ] } se(3)=\left\{ \xi = \left[\begin{matrix}\rho \\ \phi \end{matrix}\right] \in R^6,\rho \in R^3,\phi \in so(3), \xi^∨=\left[\begin{matrix}\phi^∧ & \rho\\0^T & 0 \end{matrix}\right] \right\} se(3)={ξ=[ρϕ]R6,ρR3,ϕso(3),ξ=[ϕ0Tρ0]}
      二元运算为:
      [ ξ 1 , ξ 2 ] = ( ξ 1 ∧ ξ 2 ∧ − ξ 2 ∧ ξ 1 ∧ ) ∨ [ξ_ 1,ξ_2] = (ξ_1^∧ ξ_2^∧ −ξ_2^∧ ξ_1^∧ )^∨ [ξ1,ξ2]=(ξ1ξ2ξ2ξ1)
    • 映射
      e x p ( ξ ∧ ) = [ ∑ n = 0 ∞ 1 n ! ( θ a ∧ ) n ∑ n = 0 ∞ 1 ( n + 1 ) ! ( θ a ∧ ) n ρ 0 T 1 ] = [ R J ρ 0 T 1 ] exp(\xi^∧)= \left[ \begin{matrix} ∑_{n=0}^\infty\frac{1}{ n!}(θa^∧)^n & ∑_{n=0}^\infty\frac{1}{(n+1)!}(θa^∧)^n\rho\\ 0^T & 1 \end{matrix} \right]=\left[ \begin{matrix} R & J\rho\\ 0^T & 1 \end{matrix} \right] exp(ξ)=[n=0n!1(θa)n0Tn=0(n+1)!1(θa)nρ1]=[R0TJρ1]
      其中:
      J = s i n θ θ I + ( 1 − s i n θ θ ) a a T + 1 − c o s θ θ a ∧ J=\frac{sinθ}{θ}I +(1− \frac{sinθ}{ θ} )aa^T + 1−\frac{cosθ}{ θ}a^∧ J=θsinθI+(1θsinθ)aaT+1θcosθa
  • sim(3)-单目

    • 定义
      S i m ( 3 ) = { S = [ s R t 0 T 1 ] ∈ R 4 × 4 } Sim(3)=\left\{ S = \left[\begin{matrix}sR & t \\ 0^T & 1\end{matrix}\right] \in R^{4\times 4} \right\} Sim(3)={S=[sR0Tt1]R4×4}
      s i m ( 3 ) = { ζ = [ ρ ϕ σ ] ∈ R 7 , ζ ∧ = [ σ I + ϕ ∧ ρ 0 T 0 ] } sim(3)=\left\{ \zeta = \left[\begin{matrix}\rho \\ \phi \\ \sigma\end{matrix}\right] \in R^{7},\zeta^∧= \left[\begin{matrix}\sigma I+\phi^∧ & \rho \\ 0^T & 0 \end{matrix}\right] \right\} sim(3)=ζ=ρϕσR7,ζ=[σI+ϕ0Tρ0]
    • 映射
      e x p ( ζ ∧ ) = [ e σ e x p ( ϕ ∧ ) J s ρ 0 T 1 ] exp(\zeta^∧)=\left[ \begin{matrix} e^\sigma exp(\phi^∧) & J_s\rho\\ 0^T & 1 \end{matrix} \right] exp(ζ)=[eσexp(ϕ)0TJsρ1]
      其中:
      J s = e σ − 1 σ I + σ e σ s i n θ + ( 1 − e σ c o s θ ) θ σ 2 + θ 2 a ∧ + ( e σ − 1 σ − ( e σ c o s θ − 1 ) σ + ( e σ s i n θ ) θ σ 2 + θ 2 ) a ∧ a ∧ J_s =\frac{e^σ −1}{σ}I +\frac{σe^σ sinθ + (1−e^σ cosθ)θ}{ σ^2 + θ^2}a^∧ +(\frac{e^σ −1}{ σ} −\frac{ (e^σ cosθ−1)σ + (e^σ sinθ)θ}{ σ^2 + θ^2} )a^∧a^∧ Js=σeσ1I+σ2+θ2σeσsinθ+(1eσcosθ)θa+(σeσ1σ2+θ2(eσcosθ1)σ+(eσsinθ)θ)aa
      对应关系:
      s = e σ , R = e x p ( ϕ ∧ ) , t = J s ρ s = e^σ, R = exp(ϕ^∧), t = J_sρ s=eσ,R=exp(ϕ),t=Jsρ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值