深度学习超参数简单理解learning rate,weight decay和momentum

说到这些参数就会想到Stochastic Gradient Descent (SGD)!其实这些参数在caffe.proto中 对caffe网络中出现的各项参数做了详细的解释。Learning Rate学习率决定了权值更新的速度,设置得太大会使结果超过最优值,太小会使下降速度过慢。仅靠人为干预调整...

2018-05-25 15:41:01

阅读数 225

评论数 0

对YOLO训练输出参数的理解

I was recently asked what the different parameters mean you see logged to your terminal while training and how we should interpret these. An interest...

2018-05-24 16:53:41

阅读数 636

评论数 0

windows下训练yolo时出现CUDA Error: out of memory问题的解决

1.CUDA Error: out of memory darknet: ./src/cuda.c:36: check_error: Assertio `0' failed.需要修改所使用的模型cfg文件中的subdivision的参数。由subdivisions=8改成subdivisions=...

2018-05-24 11:29:02

阅读数 13050

评论数 7

Windows下如何用CMD命令跳转到指定的目录下

    用易信  “扫一扫”将文章分享到朋友圈。   下载LOFTER我的照片书  |以Window7为例说明,想要跳转到I:\adt-bundle-windows-x86-20130219\sdk\platform-tools目录下。1、在运行中打开CMD命令窗口如下图所示: 2、输入盘符I:,...

2018-05-24 11:14:11

阅读数 5810

评论数 0

关于from PIL import Image问题

首先,需要用cmd命令找到python27\Scripts,下载安装pip,如果有,即可直接安装pillow以及image;接下来,会发现pycharm中“from PIL import Image”还是报错,接下来,我们点开file->settings-&g...

2018-05-23 16:49:51

阅读数 16070

评论数 1

python代码xml转txt

为了训练深度学习模型,经常要整理大量的标注数据,需统一不同格式的标注数据,一般情况下习惯读取TXT格式的数据。但实际中经常遇到XML格式的标注数据,在此举例:1.读取XML标注数据;2.写入TXT文件。XML标注数据如下[html] view plain copy<annot...

2018-05-23 15:40:12

阅读数 2507

评论数 2

SVM中核函数的理解

这篇文章是阅读JULY大神支持向量机通俗导论(理解SVM的三层境界)的一点学习笔记。 在JULY大神原文中,对核函数解释的时候,点和点的坐标表示混用了”X”这个字母,从而为理解带来了不便。于是自己经过一些验算和重写之后,有了这一学习笔记。我们知道,核函数的提出是在解决SVM在将低维线性不可分数据映...

2018-04-16 20:48:28

阅读数 606

评论数 0

从机器学习谈起

 在本篇文章中,我将对机器学习做个概要的介绍。本文的目的是能让即便完全不了解机器学习的人也能了解机器学习,并且上手相关的实践。这篇文档也算是EasyPR开发的番外篇,从这里开始,必须对机器学习了解才能进一步介绍EasyPR的内核。当然,本文也面对一般读者,不会对阅读有相关的前提要求。  在进入正题...

2018-03-30 13:04:21

阅读数 86

评论数 0

【转】PyScripter启动出错:Python could not be properly initialized. We must quit.

【问题】折腾:【记录】使用Python的IDE:PyScripter过程中,安装完毕PyScripter后,启动出错:Python could not be properly initialized. We must quit. 【解决过程】1. 由于我当前已经安装的Python版本是2.7.2的...

2018-03-25 23:58:33

阅读数 308

评论数 0

AdaBoost—MATLAB代码

 在网上看了几篇AdaBoost的介绍后,感觉网上介绍的都不好,不能够让人完全理解,因此就下载了一个外国人写的代码,总算透彻的理解了AdaBoost,可以向Transfer开进了,现在分享一下代码:     主函数代码[plain] view plain copyclear;clc;  %  % ...

2018-03-25 17:13:20

阅读数 1065

评论数 0

Boosting算法概念解析

Boosting是一族可将弱学习器提升为强学习器的算法,这族算法的工作机制类似:先从初始训练集训练出一个基学习器,再根据基学习器的表现对训练样本分布进行调整,使得先前基学习器做错的训练样本在后续受到更多的关注,然后基于调整后的样本分布来训练下一个基学习器;如此重复进行,直至基学习器数目达到事先指定...

2018-03-25 13:33:02

阅读数 217

评论数 0

主成分分析(PCA)原理详解

一、PCA简介1. 相关背景主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。上完陈恩红老师的《机器学习与知识发现》和季海波老师的《矩阵代数》两门课之后,颇有...

2018-03-24 19:41:44

阅读数 119

评论数 0

距离度量之马氏距离

马氏距离用来度量一个样本点P与数据分布为D的集合的距离。 假设样本点为: 数据集分布的均值为:  协方差矩阵为S。则这个样本点P与数据集合的马氏距离为: 马氏距离也可以衡量两个来自同一分布的样本x和y的相似性: 当样本集合的协方差矩阵是单位矩阵时,即样本的各个维度上的方差均为1.马氏距离就等于欧式...

2018-03-24 19:37:56

阅读数 398

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭