数据库SQL优化大总结之 百万级数据库优化方案

网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。

这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。

 

1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。


2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:

select id from t where num is null

最好不要给数据库留NULL,尽可能的使用 NOT NULL填充数据库.

备注、描述、评论之类的可以设置为 NULL,其他的,最好不要使用NULL。

不要以为 NULL 不需要空间,比如:char(100) 型,在字段建立时,空间就固定了, 不管是否插入值(NULL也包含在内),都是占用 100个字符的空间的,如果是varchar这样的变长字段, null 不占用空间。


可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:

select id from t where num = 0


3.应尽量避免在 where 子句中使用 != 或 <> 操作符,否则将引擎放弃使用索引而进行全表扫描。

4.应尽量避免在 where 子句中使用 or 来连接条件,如果一个字段有索引,一个字段没有索引,将导致引擎放弃使用索引而进行全表扫描,如:

select id from t where num=10 or Name = 'admin'

可以这样查询:

select id from t where num = 10
union all
select id from t where Name = 'admin'


5.in 和 not in 也要慎用,否则会导致全表扫描,如:

select id from t where num in(1,2,3)

对于连续的数值,能用 between 就不要用 in 了:

select id from t where num between 1 and 3

很多时候用 exists 代替 in 是一个好的选择:

select num from a where num in(select num from b)

用下面的语句替换:

select num from a where exists(select 1 from b where num=a.num)

 

6.下面的查询也将导致全表扫描:

select id from t where name like ‘%abc%’

若要提高效率,可以考虑全文检索。

7.如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然 而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:

select id from t where num = @num

可以改为强制查询使用索引:

select id from t with(index(索引名)) where num = @num

.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:

select id from t where num/2 = 100

应改为:

select id from t where num = 100*2


9.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:

select id from t where substring(name,1,3) = ’abc’       -–name以abc开头的id
select id from t where datediff(day,createdate,’2005-11-30′) = 0    -–‘2005-11-30’    --生成的id

应改为:

select id from t where name like 'abc%'
select id from t where createdate >= '2005-11-30' and createdate < '2005-12-1'


10.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。

11.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。

12.不要写一些没有意义的查询,如需要生成一个空表结构:

select col1,col2 into #t from t where 1=0

这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
create table #t(…)

13.Update 语句,如果只更改1、2个字段,不要Update全部字段,否则频繁调用会引起明显的性能消耗,同时带来大量日志。

14.对于多张大数据量(这里几百条就算大了)的表JOIN,要先分页再JOIN,否则逻辑读会很高,性能很差。

15.select count(*) from table;这样不带任何条件的count会引起全表扫描,并且没有任何业务意义,是一定要杜绝的。


16.索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有 必要。

17.应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。

18.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连 接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。

19.尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。

20.任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。

21.尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。

22. 避免频繁创建和删除临时表,以减少系统表资源的消耗。临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件, 最好使用导出表。

23.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。

24.如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。

25.尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。

26.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。

27.与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时 间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。

28.在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。

29.尽量避免大事务操作,提高系统并发能力。

30.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。

 

实际案例分析:拆分大的 DELETE 或INSERT 语句,批量提交SQL语句
  如果你需要在一个在线的网站上去执行一个大的 DELETE 或 INSERT 查询,你需要非常小心,要避免你的操作让你的整个网站停止相应。因为这两个操作是会锁表的,表一锁住了,别的操作都进不来了。
  Apache 会有很多的子进程或线程。所以,其工作起来相当有效率,而我们的服务器也不希望有太多的子进程,线程和数据库链接,这是极大的占服务器资源的事情,尤其是内存。
  如果你把你的表锁上一段时间,比如30秒钟,那么对于一个有很高访问量的站点来说,这30秒所积累的访问进程/线程,数据库链接,打开的文件数,可能不仅仅会让你的WEB服务崩溃,还可能会让你的整台服务器马上挂了。
  所以,如果你有一个大的处理,你一定把其拆分,使用 LIMIT oracle(rownum),sqlserver(top)条件是一个好的方法。下面是一个mysql示例:
 

复制代码

while(1){

   //每次只做1000条

   mysql_query(“delete from logs where log_date <= ’2012-11-01’ limit 1000”);

   if(mysql_affected_rows() == 0){

     //删除完成,退出!
     break;
  }

//每次暂停一段时间,释放表让其他进程/线程访问。
usleep(50000)

}

复制代码

 

好了,到这里就写完了。我知道还有很多没有写到的,还请大家补充。后面有空会介绍一些SQL优化工具给大家。让我们一起学习,一起进步吧!

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
第1章 全局在胸——用工具对SQL整体优化 1 1.1 都有哪些性能工具 1 1.1.1 不同调优场景分析 2 1.1.2 不同场景对应工具 2 1.2 整体性能工具的要点 4 1.2.1 五大性能报告的获取 5 1.2.2 五大报告关注的要点 10 1.3 案例的分享与交流 18 1.3.1 和并行等待有关的案例 18 1.3.2 和热块竞争有关的案例 19 1.3.3 和日志等待有关的案例 20 1.3.4 新疆某系统的前台优化 20 1.3.5 浙江某系统的调优案例 21 1.4 本章总结延伸与习题 21 1.4.1 总结延伸 21 1.4.2 习题训练 23 第2章 风驰电掣——有效缩短SQL优化过程 24 2.1 SQL调优时间都去哪儿了 25 2.1.1 不善于批处理频频忙交互 25 2.1.2 无法抓住主要矛盾瞎折腾 25 2.1.3 未能明确需求目标白费劲 26 2.1.4 没有分析操作难度乱调优 26 2.2 如何缩短SQL调优时间 27 2.2.1 先获取有助调优的数据库整体信息 27 2.2.2 快速获取SQL运行台前信息 27 2.2.3 快速拿到SQL关联幕后信息 28 2.3 从案例看快速SQL调优 29 2.3.1 获取数据库整体的运行情况 29 2.3.2 获取SQL的各种详细信息 29 2.4 本章总结延伸与习题 32 2.4.1 总结延伸 32 2.4.2 习题训练 33 第3章 循规蹈矩——如何读懂SQL执行计划 34 3.1 执行计划分析概述 35 3.1.1 SQL执行计划是什么 35 3.1.2 统计信息用来做什么 36 3.1.3 数据库统计信息的收集 37 3.1.4 数据库的动态采样 37 3.1.5 获取执行计划的方法(6种武器) 40 3.2 读懂执行计划的关键 48 3.2.1 解释经典执行计划方法 49 3.2.2 总结说明 55 3.3 从案例辨别低效SQL 55 3.3.1 从执行计划读出效率 56 3.3.2 执行计划效率总结 60 3.4 本章习题、总结与延伸 60 第4章 运筹帷幄——左右SQL执行计划妙招 62 4.1 控制执行计划的方法综述 63 4.1.1 控制执行计划的意义 63 4.1.2 控制执行计划的思路 64 4.2 从案例探索其方法及意义 65 4.2.1 HINT的思路 65 4.2.2 非HINT方式的执行计划改变 72 4.2.3 执行计划的固定 100 4.3 本章习题、总结与延伸 102 第5章 且慢,感受体系结构让SQL飞 103 5.1 体系结构知识 104 5.1.1 组成 104 5.1.2 原理 104 5.1.3 体会 105 5.2 体系与SQL优化 106 5.2.1 与共享池相关 107 5.2.2 数据缓冲相关 111 5.2.3 日志归档相关 116 5.3 扩展优化案例 118 5.3.1 与共享池相关 118 5.3.2 数据缓冲相关 122 5.3.3 日志归档相关 126 5.4 本章习题、总结与延伸 130 第6章 且慢,体验逻辑结构让SQL飞 132 6.1 逻辑结构 132 6.2 体系细节与SQL优化 133 6.2.1 Block 133 6.2.2 Segment与extent 137 6.2.3 Tablespace 139 6.2.4 rowid 139 6.3 相关优化案例分析 140 6.3.1 块的相关案例 141 6.3.2 段的相关案例 144 6.3.3 表空间的案例 148 6.3.4 rowid 151 6.4 本章习题、总结与延伸 153 第7章 且慢,探寻表的设计让SQL飞 154 7.1 表设计 154 7.1.1 表的设计 155 7.1.2 其他补充 155 7.2 表设计与SQL优化 156 7.2.1 表的设计 156 7.2.2 其他补充 179 7.3 相关优化案例分析 184 7.3.1 分区表相关案例 185 7.3.2 全局临时表案例 190 7.3.3 监控异常的表设计 195 7.3.4 表设计优化相关案例总结 199 7.4 本章习题、总结与延伸 199 第8章 且慢,学习索引如何让SQL飞 200 8.1 索引知识要点概述 201 8.1.1 索引结构的推理 201 8.1.2 索引特性的提炼 204 8.2 索引的SQL优化 206 8.2.1 经典三大特性 207 8.2.2 组合索引选用 217 8.2.3 索引扫描类型的分类与构造 219 8.3 索引相关优化案例 225 8.3.1 三大特性的相关案例 225 8.3.2 组合索引的经典案例 231 8.4 本章习题、总结与延伸 234 第9章 且慢,弄清索引之阻碍让SQL飞 23
编辑推荐 方法意识巧妙融入,脑图表格清晰展现; 海量案例完美结合,线上线下拓展延伸。 内容简介 有人就有江湖,有江湖就有IT系统,有IT系统就有数据库,有数据库就有SQL,SQL应用可一字概括:“广”。加之其简单易学,SQL实现也可一字概括:“乐”。 然而,SQL虽然实现简单可乐,却极易引发性能问题,那时广大SQL使用人员可要“愁”就一个字,心碎无数次了。 缘何有性能问题?原因也一字概括:“量”。当系统数据量、并发访问量上去后,不良SQL就会拖跨整个系统,我们甚至找不出哪些SQL影响了系统。即便找到也不知如何动手优化。此时的心情也可以一字概括:“懵”。 现在《收获不止SQL优化——抓住SQL的本质》开始带你抛除烦恼,走进优化的可乐世界! 首先教你SQL整体优化、快速优化实施、如何读懂执行计划、如何左右执行计划这四大必杀招。整这些干嘛呢?答案是,传授一个先整体后局部的宏观解决思路,走进“道”的世界。 接下来带领大家飞翔在“术”的天空。教你体系结构、逻辑结构、表设计、索引设计、表连接这五大要领。这么多套路,这又是要干嘛?别急,这是教你如何解决问题,准确地说,是如何不改写即完成SQL优化。 随后《收获不止SQL优化——抓住SQL的本质》指引大家学会等价改写、过程包优化、高SQL、分析函数、需求优化这些相关的五大神功。有点头晕,能否少一点套路?淡定,这还是“术”的范畴,依然是教你如何解决问题,只不过这次是如何改写SQL完成优化。 最后一个章节没套路了,其中跟随你多年的错误认识是否让你怀疑人生,其中让SQL跑得更慢的观点,是否让你三观尽毁? 再多一点真诚吧,《收获不止SQL优化——抓住SQL的本质》提供扫二维码辅助学习,是不是心被笔者给暖到了? 读完全书,来,合上书本,闭上眼睛,深呼吸,用心来感受SQL优化的世界。 一个字:“爽”! 京东购买连接:https://item.jd.com/12191576.html

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值