(第五集)函数

函数基础


函数优势

#1、代码的组织结构不清晰,可读性差
#2、遇到重复的功能只能重复编写实现代码,代码冗余
#3、功能需要扩展时,需要找出所有实现该功能的地方修改之,无法统一管理且维护难度极大 

函数分类

内置函数:无需事先定义,可直接使用。如len(),sum(),max()。

自定义函数:根据需求,事先定制来实现某种功能。

定义函数

#语法
def 函数名(参数1,参数2,参数3,...):
    '''注释'''
    函数体
    return 返回的值

#函数名要能反映其意义

函数使用的原则:先定义,再调用

#测试一
def foo():
    print('from foo')
    bar()
foo() #报错

#测试二
def bar():
    print('from bar')
def foo():
    print('from foo')
    bar()
foo() #正常

定义函数的三种形式

#1、无参:应用场景仅仅只是执行一些操作,比如与用户交互,打印
#2、有参:需要根据外部传进来的参数,才能执行相应的逻辑,比如统计长度,求最大值最小值
#3、空函数:设计代码结构
#定义阶段
def tell_tag(tag,n): #有参数
    print(tag*n)

def tell_msg(): #无参数
    print('hello world')

#调用阶段
tell_tag('*',12)
tell_msg()
tell_tag('*',12)

空函数

def auth(user,password):                             
    '''                                                           
    auth function                                                 
    :param user: 用户名                                              
    :param password: 密码                                           
    :return: 认证结果                                                 
    '''                                                           
    pass        

调用函数

  • 调用函数
函数名加括号
1 先找到名字
2 根据名字调用代码
  • 函数返回值
return->None
return 1个值->返回1个值
return 逗号分隔多个值->元组

通常有参函数需要有返回值。
通常无参函数不需要有返回值。
  • 函数调用的三种形式:
1 语句形式:foo()
2 表达式形式:3*len('hello')
3 当中另外一个函数的参数:range(len('hello'))
  • 函数的参数(形参与实参)
#形参即变量名,实参即变量值,函数调用时,将值绑定到变量名上,函数调用结束,解除绑定。

位置参数:按照从左到右的顺序定义的参数。

关键字参数:按照key=value的形式定义的实参:
无需按照位置为形参传值
1. 关键字实参必须在位置实参右面
2. 对同一个形参不能重复传值

默认参数:形参在定义时就已经为其赋值。
可以传值也可以不传值:
1. 只在定义时赋值一次
2. 默认参数的定义应该在位置形参右面
3. 默认参数通常应该定义成不可变类型

可变长参数:可变长指的是实参值的个数不固定:分别是*args(位置参数),**kwargs(关键字参数)


#5、命名关键字参数:*后定义的参数,必须被传值(有默认值的除外),且必须按照关键字实参的形式传递,可以保证,传入的参数中一定包含某些关键字:
def foo(x,y,*args,a=1,b,**kwargs):
    print(x,y)
    print(args)
    print(a)
    print(b)
    print(kwargs)

foo(1,2,3,4,5,b=3,c=4,d=5)
结果:
    1
    2
    (3, 4, 5)
    1
    3
    {'c': 4, 'd': 5}

函数对象+作用域+装饰器


函数对象

函数可以当作数据传递:
可以被引用
可以当作参数传递
返回值可以是函数
可以当作容器类型的元素
优雅的取代多分支的ifdef foo():
    print('foo')
def bar():
    print('bar')
dic={
    'foo':foo,
    'bar':bar,
}
while True:
    choice=input('>>: ').strip()
    if choice in dic:
        dic[choice]()

函数嵌套

def f1():
    def f2():
        def f3():
            print('from f3')
        f3()
    f2()
f1() # 结果为from f3

f3() #报错

名称空间与作用域

  • 名称空间:
存放名字的地方,三种名称空间,
(之前遗留的问题x=1,1存放于内存中,名字x存放在名称空间,
是存放名字x与1绑定关系的地方)
  • 名称空间的加载顺序
python test.py
#1、python解释器先启动,因而首先加载的是:内置名称空间
#2、执行test.py文件,然后以文件为基础,加载全局名称空间
#3、在执行文件的过程中如果调用函数,则临时产生局部名称空间
  • 名字的查找顺序
局部名称空间--->全局名称空间--->内置名称空间
备注:在全局无法查看局部的,在局部可以查看全局的

# max=1
def f1():
    # max=2
    def f2():
        # max=3
        print(max)#先打印
    f2()
f1()
print(max)#后打印
  • 作用域:

全局范围:内置名称空间与全局名称空间属于该范围.

局部范围:局部名称空间属于该范围.

作用域关系是在函数定义阶段就已经固定的,与函数的调用位置无关.

x=1 #定义1
def f1(): #定义2 执行1
    def f2(): # 执行2 执行8
        print(x) #执行9
    return f2  #执行3
x=100 #定义3
def f3(func):#定义4 执行5
    x=2 #执行6
    func() #执行7 执行10
x=10000 #定义5
f3(f1()) #执行4 执行11

闭包函数

  • 闭包函数包含对外部作用域而非全局作用域的引用。
def counter():
            n=0
            def incr():
                nonlocal n
                x=n
                n+=1
                return x
            return incr

        c=counter()
        print(c())  #0
        print(c())  #1
        print(c())  #2
        print(c.__closure__[0].cell_contents) #3   #查看闭包的元素
  • 闭包的意义与应用:
返回的函数对象,不仅是一个函数对象,在该函数外还包裹了一层作用域,
这使该函数无论在何处调用,优先使用自己外层包裹的作用域
  • 应用领域:延迟计算(原来我们是传参,现在我们是包起来)
    from urllib.request import urlopen
    def index(url):
        def get():
            return urlopen(url).read()
        return get
    baidu=index('http://www.baidu.com')
    print(baidu().decode('utf-8'))

装饰器


装饰器介绍:

装饰器就是闭包函数的一种应用场景。开放封闭原则:对修改封闭,对扩展开放。

装饰他人的器具,本身可以是任意可调用对象,被装饰者也可以是任意可调用对象。
装饰器的原则:1 不修改被装饰对象的源代码 2 不修改被装饰对象的调用方式。
装饰器的目标:在遵循1和2的前提下,为被装饰对象添加上新功能。

  • 装饰器的使用:
# 无参装饰器
import time
def timmer(func):
    def wrapper(*args,**kwargs):
        start_time=time.time()
        res=func(*args,**kwargs)
        stop_time=time.time()
        print('run time is %s' %(stop_time-start_time))
        return res
    return wrapper

@timmer
def foo():
    time.sleep(3)
    print('from foo')
foo()
# 有参装饰器
def auth(driver='file'):
    def auth2(func):
        def wrapper(*args,**kwargs):
            name=input("user: ")
            pwd=input("pwd: ")

            if driver == 'file':
                if name == 'egon' and pwd == '123':
                    print('login successful')
                    res=func(*args,**kwargs)
                    return res
            elif driver == 'ldap':
                print('ldap')
        return wrapper
    return auth2

@auth(driver='file')
def foo(name):
    print(name)

foo('egon')
  • 装饰器补充:wraps
from functools import wraps
def deco(func):
    @wraps(func) #加在最内层函数正上方
    def wrapper(*args,**kwargs):
        return func(*args,**kwargs)
    return wrapper

@deco
def index():
    '''哈哈哈哈'''
    print('from index')
print(index.__doc__) # 哈哈哈哈

迭代器+生成器+面向过程编程


迭代器

迭代是一个重复的过程,每次重复即一次迭代,每次迭代的结果都是下一次迭代的初始值。

可迭代对象

  • 内置有_iter_方法的对象,即obj._iter_
'hello'.__iter__
(1,2,3).__iter__
[1,2,3].__iter__
{'a':1}.__iter__
{'a','b'}.__iter__
open('a.txt').__iter__

迭代器对象即内置有_iter_又内置有__next_方法的对象。

文件类型是迭代器对象:
open('a.txt').__iter__()
open('a.txt').__next__()

迭代器对象的使用

dic={'a':1,'b':2,'c':3}
iter_dic=dic.__iter__()
#迭代器.__iter__()得到的仍然是迭代器本身
print(iter_dic.__next__()) #等同于next(iter_dic)
# 迭代器可以代替不依赖索引,进行迭代取值:
iter_dic=dic.__iter__()
while 1:
    try:
        k=next(iter_dic)
        print(dic[k])
    except StopIteration:
        break

for循环:

# for循环:可以不再依赖索引去取值
dic={'a':1,'b':2,'c':3}
for k in dic:
    print(dic[k])

for循环工作原理:
1:执行in后对象的dic.iter()方法,得到一个迭代器对象iter_dic
2: 执行next(iter_dic),将得到的值赋值给k,然后执行循环体代码。
3: 重复过程2,直到捕捉到异常StopIteration,结束循环。

迭代器的优缺点

#优点:
  - 提供一种统一的、不依赖于索引的迭代方式
  - 惰性计算,节省内存
#缺点:
  - 无法获取长度(只有在next完毕才知道到底有几个值)
  - 一次性的,只能往后走,不能往前退

生成器

函数内部包含有yield关键字,函数名()的到的结果就是生成器,并且不会执行函数内部代码。

def func():
    print('====>first')
    yield 1
    print('====>second')
    yield 2
    print('====>third')
    yield 3
    print('====>end')
g=func()
print(g) #<generator object func at 0x0000000002184360> 
  • 生成器就是迭代器:
g.__iter__
g.__next__
res=next(g)
print(res)

案例:自定义函数模拟range(1,7,2)

def my_range(start,stop,step=1):
    while start < stop:
        yield start
        start+=step

#执行函数得到生成器,本质就是迭代器
obj=my_range(1,7,2) #1  3  5
print(next(obj)) # 进入函数中开始执行
print(next(obj)) # 接收yield第一次返回的数据
print(next(obj)) # 接收第二次返回的数据
print(next(obj)) #StopIteration# 接收第三次返回的数据

协程函数

#yield关键字的另外一种使用形式:表达式形式的yield
def eater(name):
    print('%s 准备开始吃饭啦' %name)
    food_list=[]
    while True:
        food=yield food_list
        print('%s 吃了 %s' % (name,food))
        food_list.append(food)

g=eater('egon')
g.send(None) #对于表达式形式的yield,在使用时,第一次必须传None,g.send(None)等同于next(g)
g.send('蒸羊羔')
g.send('蒸鹿茸')
g.send('蒸熊掌')
g.send('烧素鸭')
g.close()
g.send('烧素鹅')
g.send('烧鹿尾')

yield总结

#1、把函数做成迭代器
#2、对比return,可以返回多次值,可以挂起/保存函数的运行状态

面向过程编程

基于面向过程设计程序就好比在设计一条流水线,是一种机械式的思维方式。
优点:复杂的问题流程化,进而简单化
缺点:可扩展性差,修改流水线的任意一个阶段,都会牵一发而动全身。
应用:扩展性要求不高的场景,典型案例如linux内核,git,httpd。

举例:
流水线1:
用户输入用户名、密码--->用户验证--->欢迎界面
流水线2:
用户输入sql--->sql解析--->执行功能

三元表达式+列表推导式+生成器表达式+递归+匿名函数+内置函数


三元表达式(If判断)

name=input('姓名>>: ')
res='SB' if name == 'alex' else 'NB'

列表推导式(for循环)

egg_list=['鸡蛋%s' %i for i in range(10)]
# 优点:方便,改变编程习惯,称为声明式编程

生成器表达式

列表推导式的[]换成()就是生成器表达式:
优点:省内存,一次只产生一个值在内存中
chicken=('鸡蛋%s' %i for i in range(5))
next(chicken)
list(chicken) #因chicken可迭代,因而可以转成列表

递归与二分法

  • python中的递归:
#递归调用是函数嵌套调用的一种特殊形式,函数在调用时,直接或间接调用了自身,就是递归调用.

def fact(n):
    if n==1:
        return 1
    return n * fact(n - 1)
print(def(5))  #120

python中的递归效率低且没有尾递归优化:
python中的递归效率低,需要在进入下一次递归时保留当前的状态,在其他语言中可以有解决方法:
尾递归优化,即在函数的最后一步(而非最后一行)调用自己,python没有尾递归,且对递归层级做了限制.

#总结递归的使用:
1. 必须有一个明确的结束条件.

2. 每次进入更深一层递归时,问题规模相比上次递归都应有所减少.

3. 递归效率不高,递归层次过多会导致栈溢出(在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。
由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出.
#修改递归最大深度:

import sys
sys.getrecursionlimit()
sys.setrecursionlimit(2000)
n=1
def test():
    global n
    print(n)
    n+=1
    test()

test()
虽可设置,但是因为不是尾递归,仍然要保存栈,内存大小一定,不可能无限递归
  • 二分法:
    遍历的效率太低,用二分法可以极大低缩小问题规模.
l=[1,2,10,30,33,99,101,200,301,402] #从小到大排列的数字列表

def search(num,l):
    if len(l) > 0:
        mid=len(l)//2
        if num > l[mid]:
            #in the right
            l=l[mid+1:]
        elif num < l[mid]:
            #in the left
            l=l[:mid]
        else:
            print('find it')
            return
        search(num,l)
    else:
        #如果值不存在,则列表切为空
        print('not exists')
        return
search(100,l)

匿名函数

lambda x,y,z=1:x+y+z #与函数有相同的作用域,但是匿名意味着引用计数为0,使用一次就释放,除非让其有名字
func=lambda x,y,z=1:x+y+z 
func(1,2,3)
#让其有名字就没有意义

对应的有名函数:
def func(x,y,z=1):
    return x+y+z
  • 有名函数与匿名函数对比
    有名函数:循环使用,保存了名字,通过名字就可以重复引用函数功能.
    匿名函数:一次性使用,随时随时定义

内置函数

内置函数id()可以返回一个对象的身份,返回值为整数。
这个整数通常对应与该对象在内存中的位置,但这与python的具体实现有关,不应该作为对身份的定义,即不够精准,
最精准的还是以内存地址为准。
is运算符用于比较两个对象的身份,等号比较两个对象的值,内置函数type()则返回一个对象的类型.

lambda与内置函数结合使用

字典的运算:最小值,最大值,排序
salaries={
    'egon':3000,
    'alex':100000000,
    'wupeiqi':10000,
    'yuanhao':2000
}

迭代字典,取得是key,因而比较的是key的最大和最小值
>>> max(salaries)
'yuanhao'
>>> min(salaries)
'alex'

可以取values来比较
>>> max(salaries.values())
>>> min(salaries.values())

通常我们都是想取出,工资最高的那个人名,即比较的是salaries的值,得到的是键
>>> max(salaries,key=lambda k:salary[k])
'alex'
>>> min(salaries,key=lambda k:salary[k])
'yuanhao'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值