学习目标
- 学习使用
Pandas
读取赛题数据 - 分析赛题数据的分布规律
数据读取
赛题数据虽然是文本数据,每个新闻是不定长的,但任然使用csv格式进行存储。因此可以直接用Pandas
完成数据读取的操作。Pandas 是基于NumPy 的一种工具,为了解决数据分析任务而创建的,Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。
数据读取代码:
import pandas as pd
train_df = pd.read_csv('../data/train_set.csv', sep='\t', nrows=100)
这里的read_csv
由三部分构成:
- 读取的文件路径,这里需要根据改成你本地的路径,可以使用相对路径或绝对路径;
- 分隔符
sep
,为每列分割的字符,设置为\t
即可; - 读取行数
nrows
,为此次读取文件的函数,是数值类型(由于数据集比较大,建议先设置为100);
读取好的数据如下图所示,是表格的形式。用 head( )
函数读取前5行数据,第一列是新闻的类别,即 0~13 ,第二列为新闻的字符。
train_df.head()
数据分析
在读取完成数据集后,我们还可以对数据集进行数据分析的操作。虽然对于非结构数据并不需要做很多的数据分析,但通过数据分析还是可以找出一些规律的。
此步骤我们读取了所有的训练集数据,在此我们通过数据分析希望得出以下结论:
- 赛题数据中,新闻文本的长度是多少?
- 赛题数据的类别分布是怎么样的,哪些类别比较多?
- 赛题数据中,字符分布是怎么样的?
句子长度分析
在赛题数据中每行句子的字符使用空格进行隔开,所以可以直接统计单词的个数来得到每个句子的长度。统计并如下:
%pylab inline
train_df['text_len'] = train_df['text'].apply(lambda x: len(x.split(' ')))
print(train_df['text_len'].describe())
对新闻句子的统计可以得出,本次赛题给定的文本比较长,每个句子平均由907个字符构成,最短的句子长度为2,最长的句子长度为57921。
下图将句子长度绘制了直方图,可见大部分句子的长度都几种在2000以内。
新闻类别分布
接下来可以对数据集的类别进行分布统计,具体统计每类新闻的样本个数。
train_df['label'].value_counts().plot(kind='bar')
plt.title('News class count')
plt.xlabel("category")
在数据集中标签的对应的关系如下:{‘科技’: 0, ‘股票’: 1, ‘体育’: 2, ‘娱乐’: 3, ‘时政’: 4, ‘社会’: 5, ‘教育’: 6, ‘财经’: 7, ‘家居’: 8, ‘游戏’: 9, ‘房产’: 10, ‘时尚’: 11, ‘彩票’: 12, ‘星座’: 13}
从统计结果可以看出,赛题的数据集类别分布存在较为不均匀的情况。在训练集中科技类新闻最多,其次是股票类新闻,最少的新闻是星座新闻。
字符分布统计
接下来可以统计每个字符出现的次数,首先可以将训练集中所有的句子进行拼接进而划分为字符,并统计每个字符的个数。
从统计结果中可以看出,在训练集中总共包括6869个字,其中编号3750的字出现的次数最多,编号3133的字出现的次数最少。
这里还可以根据字在每个句子的出现情况,反推出标点符号。下面代码统计了不同字符在句子中出现的次数,其中字符3750,字符900和字符648在20w新闻的覆盖率接近99%,很有可能是标点符号。
数据分析的结论
通过上述分析我们可以得出以下结论:
- 赛题中每个新闻包含的字符个数平均为1000个,还有一些新闻字符较长;
- 赛题中新闻类别分布不均匀,科技类新闻样本量接近4w,星座类新闻样本量不到1k;
- 赛题总共包括7000-8000个字符;
通过数据分析,我们还可以得出以下结论:
- 每个新闻平均字符个数较多,可能需要截断;
- 由于类别不均衡,会严重影响模型的精度;
本章小结
本章对赛题数据进行读取,并新闻句子长度、类别和字符进行了可视化分析。
本章作业
- 假设字符3750,字符900和字符648是句子的标点符号,请分析赛题每篇新闻平均由多少个句子构成?
train_df['sents_len'] = train_df['text'].apply(lambda x: len(re.split(' 3750 | 900 | 648 ', x)))
train_df['sents_len'].describe()
每篇新闻平均由78个句子构成
这里需要注意一下数据切割的方式,如果使用’3750|900|648’的模式,那么句子将会被错误地切割,比如,1 0 2 3750 9 8 7 6 900 82 9 21 648 将会被切成4个句子而不是3个,因为其中一个是空的。
['1 0 2 ',' 9 8 7 6 ',' 82 9 21 ','']
- 统计每类新闻中出现次数最多的字符
在这里要注意的是,如果不去除标点符号,出现次数最多的字符可能就是标点符号了。
train_df = pd.read_csv('data/train_set.csv', sep='\t')
train_df['text'] = train_df['text'].apply(lambda x: x.replace('3750',"").replace('900',"").replace('648',""))
for i in range(0, 14):
df = train_df[train_df['label'] == i]['text']
word_count = Counter(" ".join(df.values.tolist()).split())
print(i, word_count.most_common(1)[0])
作业参考:https://www.yuque.com/renchengsen/graphwhale/task02#XrpeR